The Qualitative Theory of Ordinary Differential Equations

An Introduction

Author: Fred Brauer,John A. Nohel

Publisher: Courier Corporation

ISBN: 0486151514

Category: Mathematics

Page: 320

View: 9493

DOWNLOAD NOW »

Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.

Ordinary Differential Equations

Qualitative Theory

Author: Luis Barreira,Claudia Valls

Publisher: American Mathematical Soc.

ISBN: 0821887491

Category: Mathematics

Page: 248

View: 916

DOWNLOAD NOW »

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

Ordinary Differential Equations

Author: Jack K. Hale

Publisher: Courier Corporation

ISBN: 0486472116

Category: Mathematics

Page: 361

View: 1029

DOWNLOAD NOW »

This rigorous treatment prepares readers for the study of differential equations and shows them how to research current literature. It emphasizes nonlinear problems and specific analytical methods. 1969 edition.

Stability Theory of Differential Equations

Author: Richard Bellman

Publisher: Courier Corporation

ISBN: 0486150135

Category: Mathematics

Page: 176

View: 8851

DOWNLOAD NOW »

Suitable for advanced undergraduates and graduate students, this text introduces the stability theory and asymptotic behavior of solutions of linear and nonlinear differential equations. 1953 edition.

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 4328

DOWNLOAD NOW »

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 7800

DOWNLOAD NOW »

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Ordinary Differential Equations

Analysis, Qualitative Theory and Control

Author: Hartmut Logemann,Eugene P. Ryan

Publisher: Springer

ISBN: 1447163982

Category: Mathematics

Page: 333

View: 5331

DOWNLOAD NOW »

The book comprises a rigorous and self-contained treatment of initial-value problems for ordinary differential equations. It additionally develops the basics of control theory, which is a unique feature in current textbook literature. The following topics are particularly emphasised: • existence, uniqueness and continuation of solutions, • continuous dependence on initial data, • flows, • qualitative behaviour of solutions, • limit sets, • stability theory, • invariance principles, • introductory control theory, • feedback and stabilization. The last two items cover classical control theoretic material such as linear control theory and absolute stability of nonlinear feedback systems. It also includes an introduction to the more recent concept of input-to-state stability. Only a basic grounding in linear algebra and analysis is assumed. Ordinary Differential Equations will be suitable for final year undergraduate students of mathematics and appropriate for beginning postgraduates in mathematics and in mathematically oriented engineering and science.

Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 1184

DOWNLOAD NOW »

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 9780486411804

Category: Mathematics

Page: 256

View: 9753

DOWNLOAD NOW »

Accessible text features over 100 reality-based examples pulled from the science, engineering and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Ordinary Differential Equations

Author: Wolfgang Walter

Publisher: Springer Science & Business Media

ISBN: 1461206014

Category: Mathematics

Page: 384

View: 7269

DOWNLOAD NOW »

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

A Basic Course in Partial Differential Equations

Author: Qing Han

Publisher: American Mathematical Soc.

ISBN: 0821852558

Category: Mathematics

Page: 293

View: 8322

DOWNLOAD NOW »

This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.

Approaches to the Qualitative Theory of Ordinary Differential Equations

Dynamical Systems and Nonlinear Oscillations

Author: Tong-Ren Ding

Publisher: World Scientific

ISBN: 981270468X

Category: Mathematics

Page: 383

View: 7127

DOWNLOAD NOW »

This book is an ideal text for advanced undergraduate students and graduate students with an interest in the qualitative theory of ordinary differential equations and dynamical systems. Elementary knowledge is emphasized by the detailed discussions on the fundamental theorems of the Cauchy problem, fixed-point theorems (especially the twist theorems), the principal idea of dynamical systems, the nonlinear oscillation of Duffing's equation, and some special analyses of particular differential equations. It also contains the latest research by the author as an integral part of the book.

Ordinary Differential Equations

Author: Edward L. Ince

Publisher: Courier Corporation

ISBN: 0486603490

Category: Mathematics

Page: 558

View: 9167

DOWNLOAD NOW »

Among the topics covered in this classic treatment are linear differential equations; solution in an infinite form; solution by definite integrals; algebraic theory; Sturmian theory and its later developments; further developments in the theory of boundary problems; existence theorems, equations of first order; nonlinear equations of higher order; more. "Highly recommended" — Electronics Industries.

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden,Thomas J. R. Hughes

Publisher: Courier Corporation

ISBN: 0486142272

Category: Technology & Engineering

Page: 576

View: 2233

DOWNLOAD NOW »

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.

Ordinary Differential Equations: Basics and Beyond

Author: David G. Schaeffer,John W. Cain

Publisher: Springer

ISBN: 1493963899

Category: Mathematics

Page: 542

View: 9973

DOWNLOAD NOW »

This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text (www.math.duke.edu/ode-book). Given its many applications, the book may be used comfortably in science and engineering courses as well as in mathematics courses. Its level is accessible to upper-level undergraduates but still appropriate for graduate students. The thoughtful presentation, which anticipates many confusions of beginning students, makes the book suitable for a teaching environment that emphasizes self-directed, active learning (including the so-called inverted classroom).

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

ISBN: 9780486696201

Category: Mathematics

Page: 484

View: 6660

DOWNLOAD NOW »

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.

Ordinary Differential Equations

Author: George F. Carrier,Carl E. Pearson

Publisher: SIAM

ISBN: 0898712653

Category: Mathematics

Page: 220

View: 1756

DOWNLOAD NOW »

Teaches techniques for constructing solutions of differential equations in a novel way, often giving readers opportunity for ingenuity.

The Mathematics of Games

Author: John D. Beasley

Publisher: Courier Corporation

ISBN: 048615162X

Category: Mathematics

Page: 176

View: 1419

DOWNLOAD NOW »

Lucid, instructive, and full of surprises, this book examines how simple mathematical analysis can throw unexpected light on games of every type, from poker to golf to the Rubik's cube. 1989 edition.

Ordinary Differential Equations

Author: Garrett Birkhoff,Gian-Carlo Rota

Publisher: Wiley

ISBN: 9780471860037

Category: Mathematics

Page: 416

View: 7796

DOWNLOAD NOW »

A carefully revised edition of the well-respected ODE text, whose unique treatment provides a smooth transition to critical understanding of proofs of basic theorems. First chapters present a rigorous treatment of background material; middle chapters deal in detail with systems of nonlinear differential equations; final chapters are devoted to the study of second-order linear differential equations. The power of the theory of ODE is illustrated throughout by deriving the properties of important special functions, such as Bessel functions, hypergeometric functions, and the more common orthogonal polynomials, from their defining differential equations and boundary conditions. Contains several hundred exercises. Prerequisite is a first course in ODE.

An Investigation of the Laws of Thought

Author: George Boole

Publisher: Courier Corporation

ISBN: 0486157504

Category: Mathematics

Page: 424

View: 6234

DOWNLOAD NOW »

"A classic of pure mathematics and symbolic logic." — Scientific American. A timeless introduction to the field and a landmark in symbolic logic, showing that classical logic can be treated algebraically.