The Analysis and Geometry of Hardy's Inequality

Author: Alexander A. Balinsky,W. Desmond Evans,Roger T. Lewis

Publisher: Springer

ISBN: 3319228706

Category: Mathematics

Page: 263

View: 7001

DOWNLOAD NOW »

This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.

Analysis and Geometry of Markov Diffusion Operators

Author: Dominique Bakry,Ivan Gentil,Michel Ledoux

Publisher: Springer Science & Business Media

ISBN: 3319002279

Category: Mathematics

Page: 552

View: 2814

DOWNLOAD NOW »

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Author: Haim Brezis

Publisher: Springer Science & Business Media

ISBN: 0387709142

Category: Mathematics

Page: 600

View: 5955

DOWNLOAD NOW »

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Number Theory, Fourier Analysis and Geometric Discrepancy

Author: Giancarlo Travaglini

Publisher: Cambridge University Press

ISBN: 1139992821

Category: Mathematics

Page: N.A

View: 507

DOWNLOAD NOW »

The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford University Press, USA

ISBN: 0198733151

Category: Differential equations, Partial

Page: 480

View: 4180

DOWNLOAD NOW »

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Nonlinear Analysis on Manifolds

Sobolev Spaces and Inequalities

Author: Emmanuel Hebey

Publisher: American Mathematical Soc.

ISBN: 0821827006

Category: Mathematics

Page: 290

View: 1296

DOWNLOAD NOW »

This volume offers an expanded version of lectures given at the Courant Institute on the theory of Sobolev spaces on Riemannian manifolds. ``Several surprising phenomena appear when studying Sobolev spaces on manifolds,'' according to the author. ``Questions that are elementary for Euclidean space become challenging and give rise to sophisticated mathematics, where the geometry of the manifold plays a central role.'' The volume is organized into nine chapters. Chapter 1 offers a brief introduction to differential and Riemannian geometry. Chapter 2 deals with the general theory of Sobolev spaces for compact manifolds. Chapter 3 presents the general theory of Sobolev spaces for complete, noncompact manifolds. Best constants problems for compact manifolds are discussed in Chapters 4 and 5. Chapter 6 presents special types of Sobolev inequalities under constraints. Best constants problems for complete noncompact manifolds are discussed in Chapter 7. Chapter 8 deals with Euclidean-type Sobolev inequalities. And Chapter 9 discusses the influence of symmetries on Sobolev embeddings. An appendix offers brief notes on the case of manifolds with boundaries. This topic is a field undergoing great development at this time. However, several important questions remain open. So a substantial part of the book is devoted to the concept of best constants, which appeared to be crucial for solving limiting cases of some classes of PDEs. The volume is highly self-contained. No familiarity is assumed with differentiable manifolds and Riemannian geometry, making the book accessible to a broad audience of readers, including graduate students and researchers.

Quantization on Nilpotent Lie Groups

Author: Veronique Fischer,Michael Ruzhansky

Publisher: Birkhäuser

ISBN: 3319295586

Category: Mathematics

Page: 557

View: 7598

DOWNLOAD NOW »

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.

Asymptotic Geometric Analysis, Part I

Author: Shiri Artstein-Avidan, Apostolos Giannopoulos, Vitali D. Milman

Publisher: American Mathematical Soc.

ISBN: 1470421933

Category: Functional analysis

Page: 451

View: 9485

DOWNLOAD NOW »

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Model Theory : An Introduction

Author: David Marker

Publisher: Springer Science & Business Media

ISBN: 0387227342

Category: Mathematics

Page: 345

View: 1519

DOWNLOAD NOW »

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

Holomorphic Spaces

Author: John E. McCarthy,Donald Sarason

Publisher: Cambridge University Press

ISBN: 9780521631938

Category: Mathematics

Page: 476

View: 6112

DOWNLOAD NOW »

Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.

Classical and Multilinear Harmonic Analysis

Author: Camil Muscalu,Wilhelm Schlag

Publisher: Cambridge University Press

ISBN: 1107031826

Category: Mathematics

Page: 339

View: 2979

DOWNLOAD NOW »

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Geometry of Isotropic Convex Bodies

Author: Silouanos Brazitikos,Apostolos Giannopoulos,Petros Valettas,Beatrice-Helen Vritsiou

Publisher: American Mathematical Soc.

ISBN: 1470414562

Category: Mathematics

Page: 594

View: 1670

DOWNLOAD NOW »

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.

Hardy Spaces on Homogeneous Groups

Author: G. B. Folland,Elias M. Stein

Publisher: Princeton University Press

ISBN: 9780691083100

Category: Mathematics

Page: 284

View: 2216

DOWNLOAD NOW »

The object of this monograph is to give an exposition of the real-variable theory of Hardy spaces (HP spaces). This theory has attracted considerable attention in recent years because it led to a better understanding in Rn of such related topics as singular integrals, multiplier operators, maximal functions, and real-variable methods generally. Because of its fruitful development, a systematic exposition of some of the main parts of the theory is now desirable. In addition to this exposition, these notes contain a recasting of the theory in the more general setting where the underlying Rn is replaced by a homogeneous group. The justification for this wider scope comes from two sources: 1) the theory of semi-simple Lie groups and symmetric spaces, where such homogeneous groups arise naturally as "boundaries," and 2) certain classes of non-elliptic differential equations (in particular those connected with several complex variables), where the model cases occur on homogeneous groups. The example which has been most widely studied in recent years is that of the Heisenberg group.

Basic Noncommutative Geometry

Author: Masoud Khalkhali

Publisher: European Mathematical Society

ISBN: 9783037190616

Category: Mathematics

Page: 223

View: 3250

DOWNLOAD NOW »

"Basic Noncommutative Geometry provides an introduction to noncommutative geometry and some of its applications. The book can be used either as a textbook for a graduate course on the subject or for self-study. It will be useful for graduate students and researchers in mathematics and theoretical physics and all those who are interested in gaining an understanding of the subject. One feature of this book is the wealth of examples and exercises that help the reader to navigate through the subject. While background material is provided in the text and in several appendices, some familiarity with basic notions of functional analysis, algebraic topology, differential geometry and homological algebra at a first year graduate level is helpful. Developed by Alain Connes since the late 1970s, noncommutative geometry has found many applications to long-standing conjectures in topology and geometry and has recently made headways in theoretical physics and number theory. The book starts with a detailed description of some of the most pertinent algebra-geometry correspondences by casting geometric notions in algebraic terms, then proceeds in the second chapter to the idea of a noncommutative space and how it is constructed. The last two chapters deal with homological tools: cyclic cohomology and Connes-Chern characters in K-theory and K-homology, culminating in one commutative diagram expressing the equality of topological and analytic index in a noncommutative setting. Applications to integrality of noncommutative topological invariants are given as well."--Publisher's description.

Dynamic Optimization

Deterministic and Stochastic Models

Author: Karl Hinderer,Ulrich Rieder,Michael Stieglitz

Publisher: Springer

ISBN: 3319488147

Category: Business & Economics

Page: 527

View: 2636

DOWNLOAD NOW »

This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.

A Royal Road to Algebraic Geometry

Author: Audun Holme

Publisher: Springer Science & Business Media

ISBN: 9783642192258

Category: Mathematics

Page: 366

View: 9896

DOWNLOAD NOW »

This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!

On Some Aspects of Oscillation Theory and Geometry

Author: Bruno Bianchini,Luciano Mari,Marco Rigoli

Publisher: American Mathematical Soc.

ISBN: 0821887998

Category: Mathematics

Page: 195

View: 9746

DOWNLOAD NOW »

The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.