Stochastic Processes

From Applications to Theory

Author: Pierre Del Moral,Spiridon Penev

Publisher: CRC Press

ISBN: 1498701841

Category: Mathematics

Page: 916

View: 7929

DOWNLOAD NOW »

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

Stationary Stochastic Processes

Theory and Applications

Author: Georg Lindgren

Publisher: CRC Press

ISBN: 1466557796

Category: Mathematics

Page: 375

View: 8348

DOWNLOAD NOW »

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Stochastic Processes

An Introduction, Second Edition

Author: Peter Watts Jones,Peter Smith

Publisher: CRC Press

ISBN: 1420099809

Category: Mathematics

Page: 232

View: 9945

DOWNLOAD NOW »

Based on a highly popular, well-established course taught by the authors, Stochastic Processes: An Introduction, Second Edition discusses the modeling and analysis of random experiments using the theory of probability. It focuses on the way in which the results or outcomes of experiments vary and evolve over time. The text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models. While focusing on queues, they present an extended discussion on the analysis of associated stationary processes. The book also explores reliability and other random processes, such as branching processes, martingales, and a simple epidemic. The appendix contains key mathematical results for reference. Ideal for a one-semester course on stochastic processes, this concise, updated textbook makes the material accessible to students by avoiding specialized applications and instead highlighting simple applications and examples. The associated website contains Mathematica® and R programs that offer flexibility in creating graphs and performing computations.

Elementary Applications of Probability Theory, Second Edition

Author: Henry C. Tuckwell

Publisher: CRC Press

ISBN: 9780412576201

Category: Mathematics

Page: 296

View: 1034

DOWNLOAD NOW »

This book provides a clear and straightforward introduction to applications of probability theory with examples given in the biological sciences and engineering. The first chapter contains a summary of basic probability theory. Chapters two to five deal with random variables and their applications. Topics covered include geometric probability, estimation of animal and plant populations, reliability theory and computer simulation. Chapter six contains a lucid account of the convergence of sequences of random variables, with emphasis on the central limit theorem and the weak law of numbers. The next four chapters introduce random processes, including random walks and Markov chains illustrated by examples in population genetics and population growth. This edition also includes two chapters which introduce, in a manifestly readable fashion, the topic of stochastic differential equations and their applications.

Introduction to Probability with R

Author: Kenneth Baclawski

Publisher: CRC Press

ISBN: 9781420065220

Category: Mathematics

Page: 384

View: 1247

DOWNLOAD NOW »

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Theory of Stochastic Objects

Probability, Stochastic Processes and Inference

Author: Athanasios Christou Micheas

Publisher: CRC Press

ISBN: 146651521X

Category: Mathematics

Page: 378

View: 1558

DOWNLOAD NOW »

This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.

Stochastic Modeling and Mathematical Statistics

A Text for Statisticians and Quantitative Scientists

Author: Francisco J. Samaniego

Publisher: CRC Press

ISBN: 1466560479

Category: Mathematics

Page: 622

View: 8580

DOWNLOAD NOW »

Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well as students in the quantitative sciences. The book’s conversational tone, which provides the mathematical justification behind widely used statistical methods in a reader-friendly manner, and the book’s many examples, tutorials, exercises and problems for solution, together constitute an effective resource that students can read and learn from and instructors can count on as a worthy complement to their lectures. Using classroom-tested approaches that engage students in active learning, the text offers instructors the flexibility to control the mathematical level of their course. It contains the mathematical detail that is expected in a course for "majors" but is written in a way that emphasizes the intuitive content in statistical theory and the way theoretical results are used in practice. More than 1000 exercises and problems at varying levels of difficulty and with a broad range of topical focus give instructors many options in assigning homework and provide students with many problems on which to practice and from which to learn.

Stochastic Processes

Theory for Applications

Author: Robert G. Gallager

Publisher: Cambridge University Press

ISBN: 1107435315

Category: Technology & Engineering

Page: 568

View: 2381

DOWNLOAD NOW »

This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.

A Course in Large Sample Theory

Author: Thomas S. Ferguson

Publisher: Routledge

ISBN: 1351470051

Category: Mathematics

Page: 256

View: 3354

DOWNLOAD NOW »

A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Introduction to Probability

Author: Joseph K. Blitzstein,Jessica Hwang

Publisher: CRC Press

ISBN: 1498759769

Category: Mathematics

Page: 596

View: 6590

DOWNLOAD NOW »

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Introduction to Stochastic Processes, Second Edition

Author: Gregory F. Lawler

Publisher: CRC Press

ISBN: 9781584886518

Category: Mathematics

Page: 248

View: 3251

DOWNLOAD NOW »

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Stochastic Modeling of Scientific Data

Author: Peter Guttorp,Vladimir N. Minin

Publisher: CRC Press

ISBN: 9780412992810

Category: Mathematics

Page: 384

View: 9679

DOWNLOAD NOW »

Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.

Probability, Random Processes, and Statistical Analysis

Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance

Author: Hisashi Kobayashi,Brian L. Mark,William Turin

Publisher: Cambridge University Press

ISBN: 1139502611

Category: Technology & Engineering

Page: N.A

View: 5951

DOWNLOAD NOW »

Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.

Polya Urn Models

Author: Hosam Mahmoud

Publisher: CRC Press

ISBN: 9781420059847

Category: Mathematics

Page: 312

View: 9747

DOWNLOAD NOW »

Incorporating a collection of recent results, Pólya Urn Models deals with discrete probability through the modern and evolving urn theory and its numerous applications. The book first substantiates the realization of distributions with urn arguments and introduces several modern tools, including exchangeability and stochastic processes via urns. It reviews classical probability problems and presents dichromatic Pólya urns as a basic discrete structure growing in discrete time. The author then embeds the discrete Pólya urn scheme in Poisson processes to achieve an equivalent view in continuous time, provides heuristical arguments to connect the Pólya process to the discrete urn scheme, and explores extensions and generalizations. He also discusses how functional equations for moment generating functions can be obtained and solved. The final chapters cover applications of urns to computer science and bioscience. Examining how urns can help conceptualize discrete probability principles, this book provides information pertinent to the modeling of dynamically evolving systems where particles come and go according to governing rules.

Stochastic Processes with Applications to Finance, Second Edition

Author: Masaaki Kijima

Publisher: CRC Press

ISBN: 1439884846

Category: Business & Economics

Page: 343

View: 3122

DOWNLOAD NOW »

Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools that are easy to understand even for those with little mathematical expertise. This second edition covers several important developments in the financial industry. New to the Second Edition A chapter on the change of measures and pricing of insurance products Many examples of the change of measure technique, including its use in asset pricing theory A section on the use of copulas, especially in the pricing of CDOs Two chapters that offer more coverage of interest rate derivatives and credit derivatives Exploring the merge of actuarial science and financial engineering, this edition examines how the pricing of insurance products, such as equity-linked annuities, requires knowledge of asset pricing theory since the equity index can be traded in the market. The book looks at the development of many probability transforms for pricing insurance risks, including the Esscher transform. It also describes how the copula model is used to model the joint distribution of underlying assets. By presenting significant results in discrete processes and showing how to transfer the results to their continuous counterparts, this text imparts an accessible, practical understanding of the subject. It helps readers not only grasp the theory of financial engineering, but also implement the theory in business.

The Theory of Stochastic Processes

Author: D.R. Cox

Publisher: Routledge

ISBN: 1351408941

Category: Mathematics

Page: 408

View: 3267

DOWNLOAD NOW »

This book should be of interest to undergraduate and postgraduate students of probability theory.

Stationary Stochastic Processes for Scientists and Engineers

Author: Georg Lindgren,Holger Rootzen,Maria Sandsten

Publisher: CRC Press

ISBN: 1466586184

Category: Mathematics

Page: 330

View: 5910

DOWNLOAD NOW »

Stochastic processes are indispensable tools for development and research in signal and image processing, automatic control, oceanography, structural reliability, environmetrics, climatology, econometrics, and many other areas of science and engineering. Suitable for a one-semester course, Stationary Stochastic Processes for Scientists and Engineers teaches students how to use these processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. The text first introduces numerous examples from signal processing, economics, and general natural sciences and technology. It then covers the estimation of mean value and covariance functions, properties of stationary Poisson processes, Fourier analysis of the covariance function (spectral analysis), and the Gaussian distribution. The book also focuses on input-output relations in linear filters, describes discrete-time auto-regressive and moving average processes, and explains how to solve linear stochastic differential equations. It concludes with frequency analysis and estimation of spectral densities. With a focus on model building and interpreting the statistical concepts, this classroom-tested book conveys a broad understanding of the mechanisms that generate stationary stochastic processes. By combining theory and applications, the text gives students a well-rounded introduction to these processes. To enable hands-on practice, MATLAB® code is available online.

Generalized Additive Models

An Introduction with R, Second Edition

Author: Simon N. Wood

Publisher: CRC Press

ISBN: 1498728375

Category: Mathematics

Page: 496

View: 7267

DOWNLOAD NOW »

The first edition of this book has established itself as one of the leading references on generalized additive models (GAMs), and the only book on the topic to be introductory in nature with a wealth of practical examples and software implementation. It is self-contained, providing the necessary background in linear models, linear mixed models, and generalized linear models (GLMs), before presenting a balanced treatment of the theory and applications of GAMs and related models. The author bases his approach on a framework of penalized regression splines, and while firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of R software helps explain the theory and illustrates the practical application of the methodology. Each chapter contains an extensive set of exercises, with solutions in an appendix or in the book’s R data package gamair, to enable use as a course text or for self-study. Simon N. Wood is a professor of Statistical Science at the University of Bristol, UK, and author of the R package mgcv.

Probability and Statistics for Computer Scientists, Second Edition

Author: Michael Baron

Publisher: CRC Press

ISBN: 1498760600

Category: Mathematics

Page: 449

View: 4427

DOWNLOAD NOW »

Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Stochastic Analysis for Gaussian Random Processes and Fields

With Applications

Author: Vidyadhar S. Mandrekar,Leszek Gawarecki

Publisher: CRC Press

ISBN: 1498707823

Category: Mathematics

Page: 201

View: 447

DOWNLOAD NOW »

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs). The book begins with preliminary results on covariance and associated RKHS before introducing the Gaussian process and Gaussian random fields. The authors use chaos expansion to define the Skorokhod integral, which generalizes the Itô integral. They show how the Skorokhod integral is a dual operator of Skorokhod differentiation and the divergence operator of Malliavin. The authors also present Gaussian processes indexed by real numbers and obtain a Kallianpur–Striebel Bayes' formula for the filtering problem. After discussing the problem of equivalence and singularity of Gaussian random fields (including a generalization of the Girsanov theorem), the book concludes with the Markov property of Gaussian random fields indexed by measures and generalized Gaussian random fields indexed by Schwartz space. The Markov property for generalized random fields is connected to the Markov process generated by a Dirichlet form.