Stochastic Processes

From Applications to Theory

Author: Pierre Del Moral,Spiridon Penev

Publisher: CRC Press

ISBN: 1498701841

Category: Mathematics

Page: 866

View: 4713

DOWNLOAD NOW »

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.

Stochastic Processes with Applications to Finance

Author: Masaaki Kijima

Publisher: CRC Press

ISBN: 9781584882244

Category: Mathematics

Page: 288

View: 7629

DOWNLOAD NOW »

In recent years, modeling financial uncertainty using stochastic processes has become increasingly important, but it is commonly perceived as requiring a deep mathematical background. Stochastic Processes with Applications to Finance shows that this is not necessarily so. It presents the theory of discrete stochastic processes and their applications in finance in an accessible treatment that strikes a balance between the abstract and the practical. Using an approach that views sophisticated stochastic calculus as based on a simple class of discrete processes-"random walks"-the author first provides an elementary introduction to the relevant areas of real analysis and probability. He then uses random walks to explain the change of measure formula, the reflection principle, and the Kolmogorov backward equation. The Black-Scholes formula is derived as a limit of binomial model, and applications to the pricing of derivative securities are presented. Another primary focus of the book is the pricing of corporate bonds and credit derivatives, which the author explains in terms of discrete default models. By presenting important results in discrete processes and showing how to transfer those results to their continuous counterparts, Stochastic Processes with Applications to Finance imparts an intuitive and practical understanding of the subject. This unique treatment is ideal both as a text for a graduate-level class and as a reference for researchers and practitioners in financial engineering, operations research, and mathematical and statistical finance.

Stochastic Processes with Applications to Finance, Second Edition

Author: Masaaki Kijima

Publisher: CRC Press

ISBN: 143988482X

Category: Business & Economics

Page: 343

View: 5928

DOWNLOAD NOW »

Financial engineering has been proven to be a useful tool for risk management, but using the theory in practice requires a thorough understanding of the risks and ethical standards involved. Stochastic Processes with Applications to Finance, Second Edition presents the mathematical theory of financial engineering using only basic mathematical tools that are easy to understand even for those with little mathematical expertise. This second edition covers several important developments in the financial industry. New to the Second Edition A chapter on the change of measures and pricing of insurance products Many examples of the change of measure technique, including its use in asset pricing theory A section on the use of copulas, especially in the pricing of CDOs Two chapters that offer more coverage of interest rate derivatives and credit derivatives Exploring the merge of actuarial science and financial engineering, this edition examines how the pricing of insurance products, such as equity-linked annuities, requires knowledge of asset pricing theory since the equity index can be traded in the market. The book looks at the development of many probability transforms for pricing insurance risks, including the Esscher transform. It also describes how the copula model is used to model the joint distribution of underlying assets. By presenting significant results in discrete processes and showing how to transfer the results to their continuous counterparts, this text imparts an accessible, practical understanding of the subject. It helps readers not only grasp the theory of financial engineering, but also implement the theory in business.

Operations Research and Management Science Handbook

Author: A. Ravi Ravindran

Publisher: CRC Press

ISBN: 9781420009712

Category: Technology & Engineering

Page: 904

View: 5754

DOWNLOAD NOW »

Operations Research (OR) began as an interdisciplinary activity to solve complex military problems during World War II. Utilizing principles from mathematics, engineering, business, computer science, economics, and statistics, OR has developed into a full fledged academic discipline with practical application in business, industry, government and military. Currently regarded as a body of established mathematical models and methods essential to solving complicated management issues, OR provides quantitative analysis of problems from which managers can make objective decisions. Operations Research and Management Science (OR/MS) methodologies continue to flourish in numerous decision making fields. Featuring a mix of international authors, Operations Research and Management Science Handbook combines OR/MS models, methods, and applications into one comprehensive, yet concise volume. The first resource to reach for when confronting OR/MS difficulties, this text – Provides a single source guide in OR/MS Bridges theory and practice Covers all topics relevant to OR/MS Offers a quick reference guide for students, researchers and practitioners Contains unified and up-to-date coverage designed and edited with non-experts in mind Discusses software availability for all OR/MS techniques Includes contributions from a mix of domestic and international experts The 26 chapters in the handbook are divided into two parts. Part I contains 14 chapters that cover the fundamental OR/MS models and methods. Each chapter gives an overview of a particular OR/MS model, its solution methods and illustrates successful applications. Part II of the handbook contains 11 chapters discussing the OR/MS applications in specific areas. They include airlines, e-commerce, energy systems, finance, military, production systems, project management, quality control, reliability, supply chain management and water resources. Part II ends with a chapter on the future of OR/MS applications.

Stationary Stochastic Processes

Theory and Applications

Author: Georg Lindgren

Publisher: CRC Press

ISBN: 1466557796

Category: Mathematics

Page: 375

View: 6185

DOWNLOAD NOW »

Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.

Event-Based Control and Signal Processing

Author: Marek Miskowicz

Publisher: CRC Press

ISBN: 1482256568

Category: Technology & Engineering

Page: 558

View: 9978

DOWNLOAD NOW »

Event-based systems are a class of reactive systems deployed in a wide spectrum of engineering disciplines including control, communication, signal processing, and electronic instrumentation. Activities in event-based systems are triggered in response to events usually representing a significant change of the state of controlled or monitored physical variables. Event-based systems adopt a model of calls for resources only if it is necessary, and therefore, they are characterized by efficient utilization of communication bandwidth, computation capability, and energy budget. Currently, the economical use of constrained technical resources is a critical issue in various application domains because many systems become increasingly networked, wireless, and spatially distributed. Event-Based Control and Signal Processing examines the event-based paradigm in control, communication, and signal processing, with a focus on implementation in networked sensor and control systems. Featuring 23 chapters contributed by more than 60 leading researchers from around the world, this book covers: Methods of analysis and design of event-based control and signal processing Event-driven control and optimization of hybrid systems Decentralized event-triggered control Periodic event-triggered control Model-based event-triggered control and event-triggered generalized predictive control Event-based intermittent control in man and machine Event-based PID controllers Event-based state estimation Self-triggered and team-triggered control Event-triggered and time-triggered real-time architectures for embedded systems Event-based continuous-time signal acquisition and DSP Statistical event-based signal processing in distributed detection and estimation Asynchronous spike event coding technique with address event representation Event-based processing of non-stationary signals Event-based digital (FIR and IIR) filters Event-based local bandwidth estimation and signal reconstruction Event-Based Control and Signal Processing is the first extensive study on both event-based control and event-based signal processing, presenting scientific contributions at the cutting edge of modern science and engineering.

Modeling and Analysis of Stochastic Systems

Author: Vidyadhar G. Kulkarni

Publisher: CRC Press

ISBN: 9780412049910

Category: Business & Economics

Page: 634

View: 9716

DOWNLOAD NOW »

This practical text aims to enable students in engineering, business, operations research, public policy, and computer science to model and analyze stochastic systems. The major classes of useful stochastic processes - discrete and continuous time Markov chains, renewal processes, regenerative processes, and Markov regenerative processes - are presented, with an emphasis on modelling real-life situations with stochastic elements and analyzing the resulting stochastic model.

Elementary Applications of Probability Theory, Second Edition

Author: Henry C. Tuckwell

Publisher: CRC Press

ISBN: 9780412576201

Category: Mathematics

Page: 296

View: 5290

DOWNLOAD NOW »

This book provides a clear and straightforward introduction to applications of probability theory with examples given in the biological sciences and engineering. The first chapter contains a summary of basic probability theory. Chapters two to five deal with random variables and their applications. Topics covered include geometric probability, estimation of animal and plant populations, reliability theory and computer simulation. Chapter six contains a lucid account of the convergence of sequences of random variables, with emphasis on the central limit theorem and the weak law of numbers. The next four chapters introduce random processes, including random walks and Markov chains illustrated by examples in population genetics and population growth. This edition also includes two chapters which introduce, in a manifestly readable fashion, the topic of stochastic differential equations and their applications.

Stochastic Processes

An Introduction, Second Edition

Author: Peter Watts Jones,Peter Smith

Publisher: CRC Press

ISBN: 1420099809

Category: Mathematics

Page: 232

View: 7572

DOWNLOAD NOW »

Based on a highly popular, well-established course taught by the authors, Stochastic Processes: An Introduction, Second Edition discusses the modeling and analysis of random experiments using the theory of probability. It focuses on the way in which the results or outcomes of experiments vary and evolve over time. The text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models. While focusing on queues, they present an extended discussion on the analysis of associated stationary processes. The book also explores reliability and other random processes, such as branching processes, martingales, and a simple epidemic. The appendix contains key mathematical results for reference. Ideal for a one-semester course on stochastic processes, this concise, updated textbook makes the material accessible to students by avoiding specialized applications and instead highlighting simple applications and examples. The associated website contains Mathematica® and R programs that offer flexibility in creating graphs and performing computations.

Stochastic Modeling of Scientific Data

Author: Peter Guttorp,Vladimir N. Minin

Publisher: CRC Press

ISBN: 9780412992810

Category: Mathematics

Page: 384

View: 5668

DOWNLOAD NOW »

Stochastic Modeling of Scientific Data combines stochastic modeling and statistical inference in a variety of standard and less common models, such as point processes, Markov random fields and hidden Markov models in a clear, thoughtful and succinct manner. The distinguishing feature of this work is that, in addition to probability theory, it contains statistical aspects of model fitting and a variety of data sets that are either analyzed in the text or used as exercises. Markov chain Monte Carlo methods are introduced for evaluating likelihoods in complicated models and the forward backward algorithm for analyzing hidden Markov models is presented. The strength of this text lies in the use of informal language that makes the topic more accessible to non-mathematicians. The combinations of hard science topics with stochastic processes and their statistical inference puts it in a new category of probability textbooks. The numerous examples and exercises are drawn from astronomy, geology, genetics, hydrology, neurophysiology and physics.

Applied Probability and Stochastic Processes

Author: Frank Beichelt

Publisher: CRC Press

ISBN: 148225767X

Category: Business & Economics

Page: 562

View: 9116

DOWNLOAD NOW »

Applied Probability and Stochastic Processes, Second Edition presents a self-contained introduction to elementary probability theory and stochastic processes with a special emphasis on their applications in science, engineering, finance, computer science, and operations research. It covers the theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates applications through the analysis of numerous practical examples. The author draws on his 50 years of experience in the field to give your students a better understanding of probability theory and stochastic processes and enable them to use stochastic modeling in their work. New to the Second Edition Completely rewritten part on probability theory—now more than double in size New sections on time series analysis, random walks, branching processes, and spectral analysis of stationary stochastic processes Comprehensive numerical discussions of examples, which replace the more theoretically challenging sections Additional examples, exercises, and figures Presenting the material in a student-friendly, application-oriented manner, this non-measure theoretic text only assumes a mathematical maturity that applied science students acquire during their undergraduate studies in mathematics. Many exercises allow students to assess their understanding of the topics. In addition, the book occasionally describes connections between probabilistic concepts and corresponding statistical approaches to facilitate comprehension. Some important proofs and challenging examples and exercises are also included for more theoretically interested readers.

Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse

Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 1012

DOWNLOAD NOW »

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1

Polya Urn Models

Author: Hosam Mahmoud

Publisher: CRC Press

ISBN: 9781420059847

Category: Mathematics

Page: 312

View: 3159

DOWNLOAD NOW »

Incorporating a collection of recent results, Pólya Urn Models deals with discrete probability through the modern and evolving urn theory and its numerous applications. The book first substantiates the realization of distributions with urn arguments and introduces several modern tools, including exchangeability and stochastic processes via urns. It reviews classical probability problems and presents dichromatic Pólya urns as a basic discrete structure growing in discrete time. The author then embeds the discrete Pólya urn scheme in Poisson processes to achieve an equivalent view in continuous time, provides heuristical arguments to connect the Pólya process to the discrete urn scheme, and explores extensions and generalizations. He also discusses how functional equations for moment generating functions can be obtained and solved. The final chapters cover applications of urns to computer science and bioscience. Examining how urns can help conceptualize discrete probability principles, this book provides information pertinent to the modeling of dynamically evolving systems where particles come and go according to governing rules.

Zeitreihenmodelle

Author: Andrew C. Harvey

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486786741

Category: Business & Economics

Page: 396

View: 2162

DOWNLOAD NOW »

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

Stationary Stochastic Processes for Scientists and Engineers

Author: Georg Lindgren,Holger Rootzen,Maria Sandsten

Publisher: CRC Press

ISBN: 1466586184

Category: Mathematics

Page: 330

View: 6798

DOWNLOAD NOW »

Stochastic processes are indispensable tools for development and research in signal and image processing, automatic control, oceanography, structural reliability, environmetrics, climatology, econometrics, and many other areas of science and engineering. Suitable for a one-semester course, Stationary Stochastic Processes for Scientists and Engineers teaches students how to use these processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. The text first introduces numerous examples from signal processing, economics, and general natural sciences and technology. It then covers the estimation of mean value and covariance functions, properties of stationary Poisson processes, Fourier analysis of the covariance function (spectral analysis), and the Gaussian distribution. The book also focuses on input-output relations in linear filters, describes discrete-time auto-regressive and moving average processes, and explains how to solve linear stochastic differential equations. It concludes with frequency analysis and estimation of spectral densities. With a focus on model building and interpreting the statistical concepts, this classroom-tested book conveys a broad understanding of the mechanisms that generate stationary stochastic processes. By combining theory and applications, the text gives students a well-rounded introduction to these processes. To enable hands-on practice, MATLAB® code is available online.

Stochastic Modelling for Systems Biology, Second Edition

Author: Darren J. Wilkinson

Publisher: CRC Press

ISBN: 1439837724

Category: Mathematics

Page: 363

View: 486

DOWNLOAD NOW »

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Applied Stochastic Modelling, Second Edition

Author: Byron J.T. Morgan

Publisher: CRC Press

ISBN: 1420011650

Category: Mathematics

Page: 368

View: 8654

DOWNLOAD NOW »

Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB® and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.