Stochastic Calculus and Financial Applications

Author: J. Michael Steele

Publisher: Springer Science & Business Media

ISBN: 1468493051

Category: Mathematics

Page: 302

View: 2717

DOWNLOAD NOW »

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 6703

DOWNLOAD NOW »

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Introduction to Stochastic Calculus with Applications

Author: Fima C Klebaner

Publisher: World Scientific Publishing Company

ISBN: 1911298674

Category: Mathematics

Page: 452

View: 9995

DOWNLOAD NOW »

This book presents a concise and rigorous treatment of stochastic calculus. It also gives its main applications in finance, biology and engineering. In finance, the stochastic calculus is applied to pricing options by no arbitrage. In biology, it is applied to populations' models, and in engineering it is applied to filter signal from noise. Not everything is proved, but enough proofs are given to make it a mathematically rigorous exposition. This book aims to present the theory of stochastic calculus and its applications to an audience which possesses only a basic knowledge of calculus and probability. It may be used as a textbook by graduate and advanced undergraduate students in stochastic processes, financial mathematics and engineering. It is also suitable for researchers to gain working knowledge of the subject. It contains many solved examples and exercises making it suitable for self study. In the book many of the concepts are introduced through worked-out examples, eventually leading to a complete, rigorous statement of the general result, and either a complete proof, a partial proof or a reference. Using such structure, the text will provide a mathematically literate reader with rapid introduction to the subject and its advanced applications. The book covers models in mathematical finance, biology and engineering. For mathematicians, this book can be used as a first text on stochastic calculus or as a companion to more rigorous texts by a way of examples and exercises. Contents:Preliminaries From CalculusConcepts of Probability TheoryBasic Stochastic ProcessesBrownian Motion CalculusStochastic Differential EquationsDiffusion ProcessesMartingalesCalculus for SemimartingalesPure Jump ProcessesChange of Probability MeasureApplications in Finance: Stock and FX OptionsApplications in Finance: Bonds, Rates and OptionsApplications in BiologyApplications in Engineering and Physics Readership: Academics, mathematicians, advanced undergraduates, graduates, practitioners in finance, risk managers and electrical engineers.

Applied Stochastic Models and Control for Finance and Insurance

Author: Charles S. Tapiero

Publisher: Springer Science & Business Media

ISBN: 1461558239

Category: Business & Economics

Page: 341

View: 7550

DOWNLOAD NOW »

Applied Stochastic Models and Control for Finance and Insurance presents at an introductory level some essential stochastic models applied in economics, finance and insurance. Markov chains, random walks, stochastic differential equations and other stochastic processes are used throughout the book and systematically applied to economic and financial applications. In addition, a dynamic programming framework is used to deal with some basic optimization problems. The book begins by introducing problems of economics, finance and insurance which involve time, uncertainty and risk. A number of cases are treated in detail, spanning risk management, volatility, memory, the time structure of preferences, interest rates and yields, etc. The second and third chapters provide an introduction to stochastic models and their application. Stochastic differential equations and stochastic calculus are presented in an intuitive manner, and numerous applications and exercises are used to facilitate their understanding and their use in Chapter 3. A number of other processes which are increasingly used in finance and insurance are introduced in Chapter 4. In the fifth chapter, ARCH and GARCH models are presented and their application to modeling volatility is emphasized. An outline of decision-making procedures is presented in Chapter 6. Furthermore, we also introduce the essentials of stochastic dynamic programming and control, and provide first steps for the student who seeks to apply these techniques. Finally, in Chapter 7, numerical techniques and approximations to stochastic processes are examined. This book can be used in business, economics, financial engineering and decision sciences schools for second year Master's students, as well as in a number of courses widely given in departments of statistics, systems and decision sciences.

Introductory Stochastic Analysis for Finance and Insurance

Author: X. Sheldon Lin,Society of Actuaries

Publisher: John Wiley & Sons

ISBN: 0471793205

Category: Mathematics

Page: 224

View: 3392

DOWNLOAD NOW »

Incorporates the many tools needed for modeling and pricing infinance and insurance Introductory Stochastic Analysis for Finance and Insuranceintroduces readers to the topics needed to master and use basicstochastic analysis techniques for mathematical finance. The authorpresents the theories of stochastic processes and stochasticcalculus and provides the necessary tools for modeling and pricingin finance and insurance. Practical in focus, the book's emphasisis on application, intuition, and computation, rather thantheory. Consequently, the text is of interest to graduate students,researchers, and practitioners interested in these areas. While thetext is self-contained, an introductory course in probabilitytheory is beneficial to prospective readers. This book evolved from the author's experience as an instructor andhas been thoroughly classroom-tested. Following an introduction,the author sets forth the fundamental information and tools neededby researchers and practitioners working in the financial andinsurance industries: * Overview of Probability Theory * Discrete-Time stochastic processes * Continuous-time stochastic processes * Stochastic calculus: basic topics The final two chapters, Stochastic Calculus: Advanced Topics andApplications in Insurance, are devoted to more advanced topics.Readers learn the Feynman-Kac formula, the Girsanov's theorem, andcomplex barrier hitting times distributions. Finally, readersdiscover how stochastic analysis and principles are applied inpractice through two insurance examples: valuation of equity-linkedannuities under a stochastic interest rate environment andcalculation of reserves for universal life insurance. Throughout the text, figures and tables are used to help simplifycomplex theory and pro-cesses. An extensive bibliography opens upadditional avenues of research to specialized topics. Ideal for upper-level undergraduate and graduate students, thistext is recommended for one-semester courses in stochastic financeand calculus. It is also recommended as a study guide forprofessionals taking Causality Actuarial Society (CAS) and Societyof Actuaries (SOA) actuarial examinations.

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden,Eckhard Platen

Publisher: Springer Science & Business Media

ISBN: 3662126168

Category: Mathematics

Page: 636

View: 9776

DOWNLOAD NOW »

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Elementary Stochastic Calculus with Finance in View

Author: Thomas Mikosch

Publisher: World Scientific

ISBN: 9789810235437

Category: Mathematics

Page: 212

View: 9433

DOWNLOAD NOW »

Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.

Continuous-time Stochastic Control and Optimization with Financial Applications

Author: Huyên Pham

Publisher: Springer Science & Business Media

ISBN: 3540895000

Category: Mathematics

Page: 232

View: 3660

DOWNLOAD NOW »

Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Derivative Pricing in Discrete Time

Author: Nigel J. Cutland,Alet Roux

Publisher: Springer Science & Business Media

ISBN: 1447144074

Category: Mathematics

Page: 325

View: 1358

DOWNLOAD NOW »

Derivatives are financial entities whose value is derived from the value of other more concrete assets such as stocks and commodities. They are an important ingredient of modern financial markets. This book provides an introduction to the mathematical modelling of real world financial markets and the rational pricing of derivatives, which is part of the theory that not only underpins modern financial practice but is a thriving area of mathematical research. The central theme is the question of how to find a fair price for a derivative; defined to be a price at which it is not possible for any trader to make a risk free profit by trading in the derivative. To keep the mathematics as simple as possible, while explaining the basic principles, only discrete time models with a finite number of possible future scenarios are considered. The theory examines the simplest possible financial model having only one time step, where many of the fundamental ideas occur, and are easily understood. Proceeding slowly, the theory progresses to more realistic models with several stocks and multiple time steps, and includes a comprehensive treatment of incomplete models. The emphasis throughout is on clarity combined with full rigour. The later chapters deal with more advanced topics, including how the discrete time theory is related to the famous continuous time Black-Scholes theory, and a uniquely thorough treatment of American options. The book assumes no prior knowledge of financial markets, and the mathematical prerequisites are limited to elementary linear algebra and probability. This makes it accessible to undergraduates in mathematics as well as students of other disciplines with a mathematical component. It includes numerous worked examples and exercises, making it suitable for self-study.

An Introduction to Stochastic Modeling

Author: Mark A. Pinsky,Samuel Karlin

Publisher: Academic Press

ISBN: 0123814162

Category: Mathematics

Page: 563

View: 2115

DOWNLOAD NOW »

Serving as the foundation for a one-semester course in stochastic processes for students familiar with elementary probability theory and calculus, Introduction to Stochastic Modeling, Third Edition, bridges the gap between basic probability and an intermediate level course in stochastic processes. The objectives of the text are to introduce students to the standard concepts and methods of stochastic modeling, to illustrate the rich diversity of applications of stochastic processes in the applied sciences, and to provide exercises in the application of simple stochastic analysis to realistic problems. * Realistic applications from a variety of disciplines integrated throughout the text * Plentiful, updated and more rigorous problems, including computer "challenges" * Revised end-of-chapter exercises sets-in all, 250 exercises with answers * New chapter on Brownian motion and related processes * Additional sections on Matingales and Poisson process * Solutions manual available to adopting instructors

Monte Carlo Methods in Financial Engineering

Author: Paul Glasserman

Publisher: Springer Science & Business Media

ISBN: 0387216170

Category: Mathematics

Page: 596

View: 6180

DOWNLOAD NOW »

From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Stochastic Processes

From Physics to Finance

Author: Wolfgang Paul,Jörg Baschnagel

Publisher: Springer Science & Business Media

ISBN: 3319003275

Category: Science

Page: 280

View: 4750

DOWNLOAD NOW »

This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

An Introduction to Continuous-Time Stochastic Processes

Theory, Models, and Applications to Finance, Biology, and Medicine

Author: Vincenzo Capasso,David Bakstein

Publisher: Birkhäuser

ISBN: 1493927574

Category: Mathematics

Page: 482

View: 4313

DOWNLOAD NOW »

This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: Markov processes Stochastic differential equations Arbitrage-free markets and financial derivatives Insurance risk Population dynamics, and epidemics Agent-based models New to the Third Edition: Infinitely divisible distributions Random measures Levy processes Fractional Brownian motion Ergodic theory Karhunen-Loeve expansion Additional applications Additional exercises Smoluchowski approximation of Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Edition will be of interest to a broad audience of students, pure and applied mathematicians, and researchers and practitioners in mathematical finance, biomathematics, biotechnology, and engineering. Suitable as a textbook for graduate or undergraduate courses, as well as European Masters courses (according to the two-year-long second cycle of the “Bologna Scheme”), the work may also be used for self-study or as a reference. Prerequisites include knowledge of calculus and some analysis; exposure to probability would be helpful but not required since the necessary fundamentals of measure and integration are provided. From reviews of previous editions: "The book is ... an account of fundamental concepts as they appear in relevant modern applications and literature. ... The book addresses three main groups: first, mathematicians working in a different field; second, other scientists and professionals from a business or academic background; third, graduate or advanced undergraduate students of a quantitative subject related to stochastic theory and/or applications." -Zentralblatt MATH

Optionsbewertung und Portfolio-Optimierung

Moderne Methoden der Finanzmathematik

Author: Ralf Korn,Elke Korn

Publisher: Springer-Verlag

ISBN: 3322832104

Category: Business & Economics

Page: 294

View: 8943

DOWNLOAD NOW »

Es werden die typischen Aufgabenstellungen der zeitstetigen Modellierung von Finanzmärkten wie Optionsbewertung (insbesondere auch die Black-Scholes-Formel und zugehörige Varianten) und Portfolio-Optimierung (Bestimmen optimaler Investmentstrategien) behandelt. Die benötigten mathematischen Werkzeuge (wie z. B. Brownsche Bewegung, Martingaltheorie, Ito-Kalkül, stochastische Steuerung) werden in selbständigen Exkursen bereitgestellt. Das Buch eignet sich als Grundlage einer Vorlesung, die sich an einen Grundkurs in Stochastik anschließt. Es richtet sich an Mathematiker, Finanz- und Wirtschaftsmathematiker in Studium und Beruf und ist aufgrund seiner modularen Struktur auch für Praktiker in den Bereichen Banken und Versicherungen geeignet.

Stochastic Analysis 2010

Author: Dan Crisan

Publisher: Springer Science & Business Media

ISBN: 9783642153587

Category: Mathematics

Page: 299

View: 8944

DOWNLOAD NOW »

Stochastic Analysis aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume “Stochastic Analysis 2010” provides a sample of the current research in the different branches of the subject. It includes the collected works of the participants at the Stochastic Analysis section of the 7th ISAAC Congress organized at Imperial College London in July 2009.

Stochastic Calculus with Applications to Stochastic Portfolio Optimisation

Author: Daniel Michelbrink

Publisher: diplom.de

ISBN: 3836612879

Category: Mathematics

Page: 96

View: 5278

DOWNLOAD NOW »

Inhaltsangabe:Introduction: The present paper is about continuous time stochastic calculus and its application to stochastic portfolio selection problems. The paper is divided into two parts: The first part provides the mathematical framework and consists of Chapters 1 and 2, where it gives an insight into the theory of stochastic process and the theory of stochastic calculus. The second part, consisting of Chapters 3 and 4, applies the first part to problems in stochastic portfolio theory and stochastic portfolio optimisation. Chapter 1, "Stochastic Processes", starts with the construction of stochastic process. The significance of Markovian kernels is discussed and some examples of process and emigroups will be given. The simple normal-distribution will be extended to the multi-variate normal distribution, which is needed for introducing the Brownian motion process. Finally, another class of stochastic process is introduced which plays a central role in mathematical finance: the martingale. Chapter 2, "Stochastic Calculus", begins with the introduction of the stochastic integral. This integral is different to the Lebesgue-Stieltjes integral because of the randomness of the integrand and integrator. This is followed by the probably most important theorem in stochastic calculus: It o s formula. It o s formula is of central importance and most of the proofs of Chapters 3 and 4 are not possible without it. We continue with the notion of a stochastic differential equations. We introduce strong and weak solutions and a way to solve stochastic differential equations by removing the drift. The last section of Chapter 2 applies stochastic calculus to stochastic control. We will need stochastic control to solve some portfolio problems in Chapter 4. Chapter 3, "Stochastic Portfolio Theory", deals mainly with the problem of introducing an appropriate model for stock prices and portfolios. These models will be needed in Chapter 4. The first section of Chapter 3 introduces a stock market model, portfolios, the risk-less asset, consumption and labour income processes. The second section, Section 3.2, introduces the notion of relative return as well as portfolio generating functions. Relative return finds application in Chapter 4 where we deal with benchmark optimisation. Benchmark optimisation is optimising a portfolio with respect to a given benchmark portfolio. The final section of Chapter 3 contains some considerations about the long-term behaviour of [...]

Stochastic Calculus for Fractional Brownian Motion and Applications

Author: Francesca Biagini,Yaozhong Hu,Bernt Øksendal,Tusheng Zhang

Publisher: Springer Science & Business Media

ISBN: 1846287979

Category: Mathematics

Page: 330

View: 2496

DOWNLOAD NOW »

The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.

Stochastic Control of Hereditary Systems and Applications

Author: Mou-Hsiung Chang

Publisher: Springer Science & Business Media

ISBN: 9780387758169

Category: Mathematics

Page: 406

View: 9783

DOWNLOAD NOW »

This monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a reference for those who have special interest in optimal control theory and applications of stochastic hereditary systems.

Continuous Stochastic Calculus with Applications to Finance

Author: Michael Meyer

Publisher: CRC Press

ISBN: 1420035592

Category: Mathematics

Page: 336

View: 5232

DOWNLOAD NOW »

The prolonged boom in the US and European stock markets has led to increased interest in the mathematics of security markets, most notably in the theory of stochastic integration. This text gives a rigorous development of the theory of stochastic integration as it applies to the valuation of derivative securities. It includes all the tools necessary for readers to understand how the stochastic integral is constructed with respect to a general continuous martingale. The author develops the stochastic calculus from first principles, but at a relaxed pace that includes proofs that are detailed, but streamlined to applications to finance. The treatment requires minimal prerequisites-a basic knowledge of measure theoretic probability and Hilbert space theory-and devotes an entire chapter to application in finances, including the Black Scholes market, pricing contingent claims, the general market model, pricing of random payoffs, and interest rate derivatives. Continuous Stochastic Calculus with Application to Finance is your first opportunity to explore stochastic integration at a reasonable and practical mathematical level. It offers a treatment well balanced between aesthetic appeal, degree of generality, depth, and ease of reading.