Statistical Analysis and Modelling of Spatial Point Patterns

Author: Dr. Janine Illian,Prof. Antti Penttinen,Dr. Helga Stoyan,Dr. Dietrich Stoyan

Publisher: John Wiley & Sons

ISBN: 9780470725153

Category: Mathematics

Page: 560

View: 8691

DOWNLOAD NOW »

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.

Applied Spatial Statistics for Public Health Data

Author: Lance A. Waller,Carol A. Gotway

Publisher: John Wiley & Sons

ISBN: 9780471662679

Category: Mathematics

Page: 520

View: 6181

DOWNLOAD NOW »

An application-based introduction to the statistical analysis of spatially referenced health data Sparked by the growing interest in statistical methods for the analysis of spatially referenced data in the field of public health, Applied Spatial Statistics for Public Health Data fills the need for an introductory, application-oriented text on this timely subject. Written for practicing public health researchers as well as graduate students in related fields, the text provides a thorough introduction to basic concepts and methods in applied spatial statistics as well as a detailed treatment of some of the more recent methods in spatial statistics useful for public health studies that have not been previously covered elsewhere. Assuming minimal knowledge of spatial statistics, the authors provide important statistical approaches for assessing such questions as: Are newly occurring cases of a disease "clustered" in space? Do the cases cluster around suspected sources of increased risk, such as toxic waste sites or other environmental hazards? How do we take monitored pollution concentrations measured at specific locations and interpolate them to locations where no measurements were taken? How do we quantify associations between local disease rates and local exposures? After reviewing traditional statistical methods used in public health research, the text provides an overview of the basic features of spatial data, illustrates various geographic mapping and visualization tools, and describes the sources of publicly available spatial data that might be useful in public health applications.

A Casebook for Spatial Statistical Data Analysis

A Compilation of Analyses of Different Thematic Data Sets

Author: Daniel A. Griffith,Larry J. Layne,J. K. Ord,Akio Sone

Publisher: Oxford University Press on Demand

ISBN: 0195109589

Category: Mathematics

Page: 506

View: 319

DOWNLOAD NOW »

This volume compiles geostatistical and spatial autoregressive data analyses involving georeferenced socioeconomic, natural resources, agricultural, pollution, and epidemiological variables. Benchmark analyses are followed by analyses of readily available data sets, emphasizing parallels between geostatistical and spatial autoregressive findings. Both SAS and SPSS code are presented for implementation purposes. This informative casebook will serve geographers, regional scientists, applied spatial statisticians, and spatial scientists from across disciplines.

Applied Spatial Data Analysis with R

Author: Roger S. Bivand,Edzer Pebesma,Virgilio Gómez-Rubio

Publisher: Springer Science & Business Media

ISBN: 1461476186

Category: Medical

Page: 405

View: 2934

DOWNLOAD NOW »

Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Statistical Methods for Spatial Data Analysis

Author: Oliver Schabenberger,Carol A. Gotway

Publisher: CRC Press

ISBN: 020349198X

Category: Mathematics

Page: 512

View: 4559

DOWNLOAD NOW »

Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.

Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains

Trends and New Domains

Author: Kumar, A.V. Senthil

Publisher: IGI Global

ISBN: 160960069X

Category: Computers

Page: 414

View: 1863

DOWNLOAD NOW »

Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains introduces the reader to recent research activities in the field of data mining. This book covers association mining, classification, mobile marketing, opinion mining, microarray data mining, internet mining and applications of data mining on biological data, telecommunication and distributed databases, among others, while promoting understanding and implementation of data mining techniques in emerging domains.

Knowledge Discovery in Spatial Data

Author: Yee Leung

Publisher: Springer Science & Business Media

ISBN: 9783642026645

Category: Social Science

Page: 360

View: 8435

DOWNLOAD NOW »

When I ?rst came across the term data mining and knowledge discovery in databases, I was excited and curious to ?nd out what it was all about. I was excited because the term tends to convey a new ?eld that is in the making. I was curious because I wondered what it was doing that the other ?elds of research, such as statistics and the broad ?eld of arti?cial intelligence, were not doing. After reading up on the literature, I have come to realize that it is not much different from conventional data analysis. The commonly used de?nition of knowledge discovery in databases: “the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data” is actually in line with the core mission of conventional data analysis. The process employed by conventional data analysis is by no means trivial, and the patterns in data to be unraveled have, of course, to be valid, novel, useful and understandable. Therefore, what is the commotion all about? Careful scrutiny of the main lines of research in data mining and knowledge discovery again told me that they are not much different from that of conventional data analysis. Putting aside data warehousing and database m- agement aspects, again a main area of research in conventional database research, the rest of the tasks in data mining are largely the main concerns of conventional data analysis.

Bayesian Statistical Modelling

Author: Peter Congdon

Publisher: John Wiley & Sons

ISBN: 0470035935

Category: Mathematics

Page: 596

View: 1111

DOWNLOAD NOW »

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

An Introduction to R for Spatial Analysis and Mapping

Author: Chris Brunsdon,Lex Comber

Publisher: SAGE Publications Limited

ISBN: 1526454203

Category: Social Science

Page: 336

View: 2265

DOWNLOAD NOW »

This is a new edition of the accessible and student-friendly 'how to' for anyone using R for the first time, for use in spatial statistical analysis, geocomputation and digital mapping. The authors, once again, take readers from ‘zero to hero’, updating the now standard text to further enable practical R applications in GIS, spatial analyses, spatial statistics, web-scraping and more. Revised and updated, each chapter includes: example data and commands to explore hands-on; scripts and coding to exemplify specific functionality; self-contained exercises for students to work through; embedded code within the descriptive text. The new edition includes detailed discussion of new and emerging packages within R like sf, ggplot, tmap, making it the go to introduction for all researchers collecting and using data with location attached. This is the introduction to the use of R for spatial statistical analysis, geocomputation, and GIS for all researchers - regardless of discipline - collecting and using data with location attached.

Statistics for Spatio-Temporal Data

Author: Noel Cressie,Christopher K. Wikle

Publisher: John Wiley & Sons

ISBN: 0471692743

Category: Mathematics

Page: 588

View: 8495

DOWNLOAD NOW »

Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material.

GIS And Generalisation

Methodology And Practice

Author: J-P Lagrange,R Weibel,Jean-Claude Muller

Publisher: CRC Press

ISBN: 9780748403196

Category: Technology & Engineering

Page: 280

View: 5525

DOWNLOAD NOW »

This text is the inaugural book in Taylor and Francis's GISDATA series, and is derived from the specialist workshop convened under the auspices of the European Science Foundation's GISDATA Scientific Programme. Generalisation is an integrating tool for the analysis and presentation of spatial data. Effective spatial data analysis requires multiple views of the world at various scales with different thematic layers of representation. Generalisation is a key mechanism in this process, as it filters out information which is required for particular scales or layers; hence it is critical to implement full and comprehensive generalisation capabilities in a GIS, something with which few current GIS are equipped.; This book overviews the core and as-yet unresolved issues surrounding the achievement of this goal, and presents various alternatives - both speculative views and practical examples - in the areas of automated generalisation, vis-a-vis problems such as object simplification and placement. At the same time it distinguishes between modelling with generalisation and graphical representation, and adopts a model-building perspective. It also describes artificial intelligence techniques for implementing automated generalised routines, and addresses issues of data quality and production.; The text is organized into six parts: an introduction; generic issue; object-orientated methods and knowledge-based modelling; knowledge acquisition and representation; data quality; and operation and implementation.

Encyclopedia of GIS

Author: Shashi Shekhar,Hui Xiong

Publisher: Springer Science & Business Media

ISBN: 038730858X

Category: Computers

Page: 1370

View: 8630

DOWNLOAD NOW »

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.

Models of Spatial Processes

An Approach to the Study of Point, Line and Area Patterns

Author: Arthur Getis,Barry Boots

Publisher: Cambridge University Press

ISBN: 9780521103541

Category: Science

Page: 216

View: 412

DOWNLOAD NOW »

This book approaches the study of patterns by emphasising the processes responsible for them; it emphasises the logical format of process-to-pattern rather than the more wasteful pattern-to-process approach. The concern is primarily with two-dimensional surfaces, which is the way most maps are used for analysis. The material is organised into sections on process models responsible for point patterns, for line patterns and then for area patterns. It represents a synthesis of the work done on patterns in a number of fields and a large literature is reviewed in the process of the synthesis. In many respects this book represents a translation of complex mathematical materials into a readable and relatively simple verbal approach to the subject and thus brings the more sophisticated aspects to a larger number of students than has been done before. The reader need only have an elementary background in statistics. The basic probability theory required by the text is given in an appendix.

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 6518

DOWNLOAD NOW »

Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Bayesian Networks

A Practical Guide to Applications

Author: Olivier Pourret,Patrick Naïm,Bruce Marcot

Publisher: John Wiley & Sons

ISBN: 9780470994542

Category: Mathematics

Page: 446

View: 1883

DOWNLOAD NOW »

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R, Revised and Expanded Edition

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133886190

Category: Computers

Page: 384

View: 7400

DOWNLOAD NOW »

To succeed with predictive analytics, you must understand it on three levels: Strategy and management Methods and models Technology and code This up-to-the-minute reference thoroughly covers all three categories. Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you’re new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you’re already a modeler, programmer, or manager, it will teach you crucial skills you don’t yet have. Unlike competitive books, this guide illuminates the discipline through realistic vignettes and intuitive data visualizations–not complex math. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work–and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. All data sets, extensive R code, and additional examples available for download at http://www.ftpress.com/miller If you want to make the most of predictive analytics, data science, and big data, this is the book for you. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business cases and challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic R programs that deliver actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Throughout, Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. This edition adds five new case studies, updates all code for the newest versions of R, adds more commenting to clarify how the code works, and offers a more detailed and up-to-date primer on data science methods. Gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more

Statistical Methods in Spatial Epidemiology

Author: Andrew B. Lawson

Publisher: John Wiley & Sons

ISBN: 1118723171

Category: Medical

Page: 192

View: 468

DOWNLOAD NOW »

Spatial epidemiology is the description and analysis of the geographical distribution of disease. It is more important now than ever, with modern threats such as bio-terrorism making such analysis even more complex. This second edition of Statistical Methods in Spatial Epidemiology is updated and expanded to offer a complete coverage of the analysis and application of spatial statistical methods. The book is divided into two main sections: Part 1 introduces basic definitions and terminology, along with map construction and some basic models. This is expanded upon in Part II by applying this knowledge to the fundamental problems within spatial epidemiology, such as disease mapping, ecological analysis, disease clustering, bio-terrorism, space-time analysis, surveillance and infectious disease modelling. Provides a comprehensive overview of the main statistical methods used in spatial epidemiology. Updated to include a new emphasis on bio-terrorism and disease surveillance. Emphasizes the importance of space-time modelling and outlines the practical application of the method. Discusses the wide range of software available for analyzing spatial data, including WinBUGS, SaTScan and R, and features an accompanying website hosting related software. Contains numerous data sets, each representing a different approach to the analysis, and provides an insight into various modelling techniques. This text is primarily aimed at medical statisticians, researchers and practitioners from public health and epidemiology. It is also suitable for postgraduate students of statistics and epidemiology, as well professionals working in government agencies.

Spatial Data Analysis

Models, Methods and Techniques

Author: Manfred M. Fischer,Jinfeng Wang

Publisher: Springer Science & Business Media

ISBN: 9783642217203

Category: Business & Economics

Page: 88

View: 7289

DOWNLOAD NOW »

The availability of spatial databases and widespread use of geographic information systems has stimulated increasing interest in the analysis and modelling of spatial data. Spatial data analysis focuses on detecting patterns, and on exploring and modelling relationships between them in order to understand the processes responsible for their emergence. In this way, the role of space is emphasised, and our understanding of the working and representation of space, spatial patterns, and processes is enhanced. In applied research, the recognition of the spatial dimension often yields different and more meaningful results and helps to avoid erroneous conclusions. This book aims to provide an introduction into spatial data analysis to graduates interested in applied statistical research. The text has been structured from a data-driven rather than a theory-based perspective, and focuses on those models, methods and techniques which are both accessible and of practical use for graduate students. Exploratory techniques as well as more formal model-based approaches are presented, and both area data and origin-destination flow data are considered.