Simulating Hamiltonian Dynamics

Author: Benedict Leimkuhler,Sebastian Reich

Publisher: Cambridge University Press

ISBN: 9780521772907

Category: Mathematics

Page: 379

View: 2835

DOWNLOAD NOW »

Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.

Mathematics and Computation, a Contemporary View

The Abel Symposium 2006

Author: Hans Z. Munthe-Kaas,Brynjulf Owren

Publisher: Springer Science & Business Media

ISBN: 3540688501

Category: Mathematics

Page: 127

View: 4198

DOWNLOAD NOW »

The 2006 Abel symposium is focusing on contemporary research involving interaction between computer science, computational science and mathematics. In recent years, computation has been affecting pure mathematics in fundamental ways. Conversely, ideas and methods of pure mathematics are becoming increasingly important within computational and applied mathematics. At the core of computer science is the study of computability and complexity for discrete mathematical structures. Studying the foundations of computational mathematics raises similar questions concerning continuous mathematical structures. There are several reasons for these developments. The exponential growth of computing power is bringing computational methods into ever new application areas. Equally important is the advance of software and programming languages, which to an increasing degree allows the representation of abstract mathematical structures in program code. Symbolic computing is bringing algorithms from mathematical analysis into the hands of pure and applied mathematicians, and the combination of symbolic and numerical techniques is becoming increasingly important both in computational science and in areas of pure mathematics.

Symmetries and Integrability of Difference Equations

Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016

Author: Decio Levi,Raphaël Rebelo,Pavel Winternitz

Publisher: Springer

ISBN: 3319566660

Category: Science

Page: 435

View: 6092

DOWNLOAD NOW »

This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.

Scattered Data Approximation

Author: Holger Wendland

Publisher: Cambridge University Press

ISBN: 9781139456654

Category: Mathematics

Page: N.A

View: 1830

DOWNLOAD NOW »

Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.

Geometric Numerical Integration

Structure-Preserving Algorithms for Ordinary Differential Equations

Author: Ernst Hairer,Christian Lubich,Gerhard Wanner

Publisher: Springer Science & Business Media

ISBN: 3662050188

Category: Mathematics

Page: 515

View: 8128

DOWNLOAD NOW »

This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds

A Geometric Approach to Modeling and Analysis

Author: Taeyoung Lee,Melvin Leok,N. Harris McClamroch

Publisher: Springer

ISBN: 3319569538

Category: Mathematics

Page: 539

View: 1528

DOWNLOAD NOW »

This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.

Structure-Preserving Algorithms for Oscillatory Differential Equations

Author: Xinyuan Wu,Xiong You,Bin Wang

Publisher: Springer Science & Business Media

ISBN: 364235338X

Category: Mathematics

Page: 236

View: 8167

DOWNLOAD NOW »

Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.

Greedy Approximation

Author: Vladimir Temlyakov

Publisher: Cambridge University Press

ISBN: 1139502808

Category: Computers

Page: N.A

View: 1485

DOWNLOAD NOW »

This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research.

Geometry and Topology for Mesh Generation

Author: Herbert Edelsbrunner

Publisher: Cambridge University Press

ISBN: 9780521793094

Category: Mathematics

Page: 177

View: 6516

DOWNLOAD NOW »

The book combines topics in mathematics (geometry and topology), computer science (algorithms), and engineering (mesh generation). The original motivation for these topics was the difficulty faced (both conceptually and in the technical execution) in any attempt to combine elements of combinatorial and of numerical algorithms. Mesh generation is a topic where a meaningful combination of these different approaches to problem solving is inevitable. The book develops methods from both areas that are amenable to combination, and explains recent breakthrough solutions to meshing that fit into this category.The book should be an ideal graduate text for courses on mesh generation. The specific material is selected giving preference to topics that are elementary, attractive, lend themselves to teaching, useful, and interesting.

Dynamical Systems and Numerical Analysis

Author: Andrew Stuart,A. R. Humphries

Publisher: Cambridge University Press

ISBN: 9780521645638

Category: Mathematics

Page: 685

View: 7312

DOWNLOAD NOW »

This book unites the study of dynamical systems and numerical solution of differential equations. The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulted as dynamical systems and the convergence and stability properties of the methods are examined. Topics studied include the stability of numerical methods for contractive, dissipative, gradient and Hamiltonian systems together with the convergence properties of equilibria, periodic solutions and strage attractors under numerical approximation. This book will be an invaluable tool for graduate students and researchers in the fields of numerical analysis and dynamical systems.

Difference Equations by Differential Equation Methods

Author: Peter E. Hydon

Publisher: Cambridge University Press

ISBN: 1139991701

Category: Mathematics

Page: N.A

View: 7917

DOWNLOAD NOW »

Most well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.

Geometric mechanics and symmetry

from finite to infinite dimensions

Author: Darryl D. Holm,Tanya Schmah,Cristina Stoica

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Mathematics

Page: 515

View: 9720

DOWNLOAD NOW »

After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group threory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyse the Euler-Poincaré equations.

Spaceflight Mechanics

Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting

Author: Srinivas Rao Vadali

Publisher: N.A

ISBN: 9780877035282

Category: Orbital mechanics

Page: 2262

View: 1159

DOWNLOAD NOW »

Topology for Computing

Author: Afra J. Zomorodian

Publisher: Cambridge University Press

ISBN: 9781139442633

Category: Computers

Page: N.A

View: 785

DOWNLOAD NOW »

The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

Symmetry, Phase Modulation and Nonlinear Waves

Author: Thomas J. Bridges

Publisher: Cambridge University Press

ISBN: 1107188849

Category: Mathematics

Page: 242

View: 2302

DOWNLOAD NOW »

Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

Molecular Modeling and Simulation

An Interdisciplinary Guide

Author: Tamar Schlick

Publisher: Springer Science & Business Media

ISBN: 0387224645

Category: Science

Page: 635

View: 7485

DOWNLOAD NOW »

Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text

Molecular Dynamics

With Deterministic and Stochastic Numerical Methods

Author: Ben Leimkuhler,Charles Matthews

Publisher: Springer

ISBN: 3319163752

Category: Mathematics

Page: 443

View: 8319

DOWNLOAD NOW »

This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method.