Lectures on Fourier Integrals. (AM-42)

Author: Salomon Bochner

Publisher: Princeton University Press

ISBN: 1400881994

Category: Mathematics

Page: 333

View: 9437


The book description for the forthcoming "Lectures on Fourier Integrals. (AM-42)" is not yet available.

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 1795


This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Algebraic Geometry for Scientists and Engineers

Author: Shreeram Shankar Abhyankar

Publisher: American Mathematical Soc.

ISBN: 0821815350

Category: Mathematics

Page: 295

View: 2497


This book, based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, is intended for engineers and scientists (especially computer scientists), as well as graduate students and advanced undergraduates in mathematics. In addition to providing a concrete or algorithmic approach to algebraic geometry, the author also attempts to motivate and explain its link to more modern algebraic geometry based on abstract algebra.The book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities. The emphasis is on presenting heuristic ideas and suggestive arguments rather than formal proofs. Readers will gain new insight into the subject of algebraic geometry in a way that should increase appreciation of modern treatments of the subject, as well as enhance its utility in applications in science and industry.

Resolution of Singularities of Embedded Algebraic Surfaces

Author: Shreeram Abhyankar

Publisher: Springer Science & Business Media

ISBN: 3662035804

Category: Mathematics

Page: 312

View: 9652


The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Vertex Algebras and Algebraic Curves: Second Edition

Author: Edward Frenkel,David Ben-Zvi

Publisher: American Mathematical Soc.

ISBN: 0821836749

Category: Mathematics

Page: 400

View: 5627


Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Advanced Analytic Number Theory


Author: Carlos J. Moreno

Publisher: American Mathematical Soc.

ISBN: 0821842668

Category: Mathematics

Page: 291

View: 8686


Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. The present book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Author: Stephen S. Kudla,Michael Rapoport,Tonghai Yang

Publisher: Princeton University Press

ISBN: 9780691125510

Category: Mathematics

Page: 373

View: 5987


Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Smoothings of Piecewise Linear Manifolds. (AM-80)

Author: Morris W. Hirsch,Barry Mazur

Publisher: Princeton University Press

ISBN: 1400881684

Category: Mathematics

Page: 140

View: 6013


The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.

Two-Dimensional Homotopy and Combinatorial Group Theory

Author: Cynthia Hog-Angeloni,Wolfgang Metzler,Allan J. Sieradski

Publisher: Cambridge University Press

ISBN: 9780521447003

Category: Mathematics

Page: 412

View: 811


Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.

Applied Picard-Lefschetz Theory

Author: V. A. Vasilʹev

Publisher: American Mathematical Soc.

ISBN: 0821829483

Category: Mathematics

Page: 324

View: 6903


Many important functions of mathematical physics are defined as integrals depending on parameters. The Picard-Lefschetz theory studies how analytic and qualitative properties of such integrals (regularity, algebraicity, ramification, singular points, etc.) depend on the monodromy of corresponding integration cycles. In this book, V. A. Vassiliev presents several versions of the Picard-Lefschetz theory, including the classical local monodromy theory of singularities and complete intersections, Pham's generalized Picard-Lefschetz formulas, stratified Picard-Lefschetz theory, and also twisted versions of all these theories with applications to integrals of multivalued forms. The author also shows how these versions of the Picard-Lefschetz theory are used in studying a variety of problems arising in many areas of mathematics and mathematical physics.In particular, he discusses the following classes of functions: volume functions arising in the Archimedes-Newton problem of integrable bodies; Newton-Coulomb potentials; fundamental solutions of hyperbolic partial differential equations; and, multidimensional hypergeometric functions generalizing the classical Gauss hypergeometric integral. The book is geared toward a broad audience of graduate students, research mathematicians and mathematical physicists interested in algebraic geometry, complex analysis, singularity theory, asymptotic methods, potential theory, and hyperbolic operators.