Probability on Real Lie Algebras

Author: Uwe Franz,Nicolas Privault

Publisher: Cambridge University Press

ISBN: 110712865X

Category: Mathematics

Page: 302

View: 4989

DOWNLOAD NOW »

This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.

The Mathieu Groups

Author: A. A. Ivanov

Publisher: Cambridge University Press

ISBN: 1108429785

Category: Mathematics

Page: 186

View: 2252

DOWNLOAD NOW »

The Mathieu Groups are presented in the context of finite geometry and the theory of group amalgams.

Dynamical Systems and Semisimple Groups

An Introduction

Author: Renato Feres,RENATO AUTOR FERES

Publisher: Cambridge University Press

ISBN: 9780521591621

Category: Mathematics

Page: 245

View: 1411

DOWNLOAD NOW »

This book comprises a systematic, self-contained introduction to the Margulis-Zimmer theory and provides an entry into current research. Taking as prerequisites only the standard first-year graduate courses in mathematics, the author develops in a detailed and self-contained way the main results on Lie groups, Lie algebras, and semisimple groups, including basic facts normally covered in first courses on manifolds and Lie groups plus topics such as integration of infinitesimal actions of Lie groups. He then derives the basic structure theorems for the real semisimple Lie groups, such as the Cartan and Iwasawa decompositions, and gives an extensive exposition of the general facts and concepts from topological dynamics and ergodic theory, including detailed proofs of the multiplicative ergodic theorem and Moore's ergodicity theorem.

Analysis and Geometry on Groups

Author: Nicholas T. Varopoulos,L. Saloff-Coste,T. Coulhon

Publisher: Cambridge University Press

ISBN: 9780521088015

Category: Mathematics

Page: 172

View: 5667

DOWNLOAD NOW »

The geometry and analysis that is discussed in this book extends to classical results for general discrete or Lie groups, and the methods used are analytical, but are not concerned with what is described these days as real analysis. Most of the results described in this book have a dual formulation: they have a "discrete version" related to a finitely generated discrete group and a continuous version related to a Lie group. The authors chose to center this book around Lie groups, but could easily have pushed it in several other directions as it interacts with the theory of second order partial differential operators, and probability theory, as well as with group theory.

Non-homogeneous Random Walks

Lyapunov Function Methods for Near-Critical Stochastic Systems

Author: Mikhail Menshikov,Serguei Popov,Andrew Wade

Publisher: Cambridge University Press

ISBN: 1316867366

Category: Mathematics

Page: N.A

View: 7859

DOWNLOAD NOW »

Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

Universal Biography

Containing a Copious Account, Critical and Historical, of the Life and Character, Labors and Actions of Eminent Persons, in All Ages and Countries, Conditions and Professions ...

Author: John Lemprière

Publisher: N.A

ISBN: N.A

Category: Biography

Page: N.A

View: 8685

DOWNLOAD NOW »

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 2055

DOWNLOAD NOW »

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Geometrische Methoden in der Invariantentheorie

Author: Hanspeter Kraft

Publisher: Springer-Verlag

ISBN: 3663101436

Category: Technology & Engineering

Page: 308

View: 900

DOWNLOAD NOW »

In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.

Börsenerfolg ist kein Zufall

die besten Investmentstrategien für das neue Jahrtausend

Author: Burton G. Malkiel

Publisher: FinanzBuch Verlag

ISBN: 9783932114342

Category: Investments

Page: 411

View: 2048

DOWNLOAD NOW »

Grundbegriffe der Wahrscheinlichkeitsrechnung

Author: A. Kolomogoroff

Publisher: Springer-Verlag

ISBN: 3642498884

Category: Mathematics

Page: 62

View: 3585

DOWNLOAD NOW »

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.