Principles of Systems Science

Author: George E Mobus,Michael C. Kalton

Publisher: Springer

ISBN: 1493919202

Category: Science

Page: 755

View: 6001

DOWNLOAD NOW »

This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving

Principles of Systems Science

Author: George E Mobus,Michael C. Kalton

Publisher: Springer

ISBN: 9781493951390

Category: Science

Page: 755

View: 8144

DOWNLOAD NOW »

This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving

Principles of Systems Science

Author: George E. Mobus,Michael C. Kalton

Publisher: Springer

ISBN: 9781493919192

Category: Science

Page: 755

View: 8793

DOWNLOAD NOW »

This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving

Open Systems Science

From Understanding Principles to Solving Problems

Author: Mario Tokoro

Publisher: IOS Press

ISBN: 1607504685

Category: Science

Page: 262

View: 2940

DOWNLOAD NOW »

Open systems science is the methodology employed to manage and solve the problems in systems whose operation involves interaction with the outside world, as opposed to being closed and complete within themselves. This new methodology was first announced at the 20th anniversary symposium of Sony CSL in 2008. Falling outside the direct scope of traditional science, an open system usually consists of multiple subsystems with varying numbers, relations and functions. Throughout the last decades, computer scientists, addressing the problems presented by globalization and the massive expansion in the application of new technologies, began to realize that open systems science could provide some of the solutions they were seeking with regard to complex and dependable systems. Starting with a chapter explaining the basic concept of open systems science, this book goes on to present the work of contributors from a variety of different disciplines, who explain how open systems science can be applied to their field. Including topics such as; biological robustness, the application of open systems methods to develop new drugs, the study of language and meaning, the interdisciplinary field of visual computing and user interfaces as the merger between the real and virtual world, this book explores the directions of science and technology in the 21st century and will be of interest to all those involved in the development and operation of complex interactive systems. IOS Press is an international science, technical and medical publisher of high-quality books for academics, scientists, and professionals in all fields. Some of the areas we publish in: -Biomedicine -Oncology -Artificial intelligence -Databases and information systems -Maritime engineering -Nanotechnology -Geoengineering -All aspects of physics -E-governance -E-commerce -The knowledge economy -Urban studies -Arms control -Understanding and responding to terrorism -Medical informatics -Computer Sciences

A Crude Look at the Whole

The Science of Complex Systems in Business, Life, and Society

Author: John Miller,H Miller

Publisher: Basic Books

ISBN: 0465073867

Category: Science

Page: 272

View: 4502

DOWNLOAD NOW »

Imagine trying to understand a stained glass window by breaking it into pieces and examining it one shard at a time. While you could probably learn a lot about each piece, you would have no idea about what the entire picture looks like. This is reductionism—the idea that to understand the world we only need to study its pieces—and it is how most social scientists approach their work. In A Crude Look at the Whole, social scientist and economist John H. Miller shows why we need to start looking at whole pictures. For one thing, whether we are talking about stock markets, computer networks, or biological organisms, individual parts only make sense when we remember that they are part of larger wholes. And perhaps more importantly, those wholes can take on behaviors that are strikingly different from that of their pieces. Miller, a leading expert in the computational study of complex adaptive systems, reveals astounding global patterns linking the organization of otherwise radically different structures: It might seem crude, but a beehive’s temperature control system can help predict market fluctuations and a mammal’s heartbeat can help us understand the “heartbeat” of a city and adapt urban planning accordingly. From enduring racial segregation to sudden stock market disasters, once we start drawing links between complex systems, we can start solving what otherwise might be totally intractable problems. Thanks to this revolutionary perspective, we can finally transcend the limits of reductionism and discover crucial new ideas. Scientifically founded and beautifully written, A Crude Look at the Whole is a powerful exploration of the challenges that we face as a society. As it reveals, taking the crude look might be the only way to truly see.

An Introduction to Complex Systems

Society, Ecology, and Nonlinear Dynamics

Author: Paul Fieguth

Publisher: Springer

ISBN: 3319446061

Category: Science

Page: 346

View: 3122

DOWNLOAD NOW »

This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.

Complexity and Postmodernism

Understanding Complex Systems

Author: Paul Cilliers

Publisher: Routledge

ISBN: 1134743300

Category: Philosophy

Page: 176

View: 6209

DOWNLOAD NOW »

In Complexity and Postmodernism, Paul Cilliers explores the idea of complexity in the light of contemporary perspectives from philosophy and science. Cilliers offers us a unique approach to understanding complexity and computational theory by integrating postmodern theory (like that of Derrida and Lyotard) into his discussion. Complexity and Postmodernism is an exciting and an original book that should be read by anyone interested in gaining a fresh understanding of complexity, postmodernism and connectionism.

Anticipatory Systems

Philosophical, Mathematical and Methodological Foundations

Author: Robert Rosen

Publisher: Elsevier

ISBN: 1483286274

Category: Science

Page: 446

View: 4265

DOWNLOAD NOW »

The first detailed study of this most important class of systems which contain internal predictive models of themselves and/or of their environments and whose predictions are utilized for purposes of present control. This book develops the basic concept of a predictive model, and shows how it can be embedded into a system of feedforward control. Includes many examples and stresses analogies between wired-in anticipatory control and processes of learning and adaption, at both individual and social levels. Shows how the basic theory of such systems throws a new light both on analytic problems (understanding what is going on in an organism or a social system) and synthetic ones (developing forecasting methods for making individual or collective decisions).

Untangling Complex Systems

A Grand Challenge for Science

Author: Pier Luigi Gentili

Publisher: CRC Press

ISBN: 0429847548

Category: Mathematics

Page: 568

View: 335

DOWNLOAD NOW »

Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.

Emergent Nested Systems

A Theory of Understanding and Influencing Complex Systems as well as Case Studies in Urban Systems

Author: Christian Walloth

Publisher: Springer

ISBN: 331927550X

Category: Technology & Engineering

Page: 199

View: 5163

DOWNLOAD NOW »

This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or with theories of emergence, will be guided through the development of a theory of emergent nested systems. The reader will also learn about new ways to influence the course of events - even though the course of events is, in principle, unpredictable, due to the ever-new emergence of real novelty.

Systems Biology

Principles, Methods, and Concepts

Author: A.K. Konopka

Publisher: CRC Press

ISBN: 1420015125

Category: Science

Page: 256

View: 4645

DOWNLOAD NOW »

With extraordinary clarity,the Systems Biology: Principles, Methods, and Concepts focuses on the technical practical aspects of modeling complex or organic general systems. It also provides in-depth coverage of modeling biochemical, thermodynamic, engineering, and ecological systems. Among other methods and concepts based in logic, computer science, and dynamical systems, it explores pragmatic techniques of General Systems Theory. This text presents biology as an autonomous science from the perspective of fundamental modeling techniques. A complete resource for anyone interested in biology as an exact science, it includes a comprehensive survey, review, and critique of concepts and methods in Systems Biology.

Systems Science and Population Health

Author: Abdulrahman M. El-Sayed,Sandro Galea,Dean and Robert a Knox Professor Sandro Galea, MD MPH Dph

Publisher: Oxford University Press

ISBN: 0190492392

Category:

Page: 240

View: 9071

DOWNLOAD NOW »

Population health is complex and multileveled, encompassing dynamic interactions between cells, societies, and everything in between. Our typical approach to studying population health, however, remains oriented around a reductionist approach to conceptualizing, empirically analyzing, and intervening to improve population health. The trouble is that interventions founded on simplifying a complex world often do not work, sometimes yielding failure or, even worse, harm. The difficult truth is that "silver bullet" health science often fails, and understanding these failures can help us improve our approach to health science, and, ultimately, population health. SYSTEMS SCIENCE AND POPULATION HEALTH employs principles from across a range of sciences to refine the way we understand population health. By augmenting traditional analytic approaches with new tools like machine learning, microsimulation, and social network analysis, population health can be studied as a dynamic and complex system. This allows us to understand population health as a complex whole, offering new insights and perspectives that stand to improve the health of the public. This text offers the first educational and practical guide to this forward-thinking approach. Comprising 17 chapters from the vanguard of population health, epidemiology, computer science, and medicine, this book offers a three-part introduction to the subject: . An intellectual and conceptual history of systems science as it intersects with population health . Concise, introductory overviews of important and emerging methodological tools in systems science, including systems dynamics, agent-based modeling, microsimulation, social network analysis, and machine-learning-all with relevant examples drawn from population health literature . An exploration of future implications for systems science and its applications to our understanding of population health issues For researchers, students, and practitioners, SYSTEMS SCIENCE AND POPULATION HEALTH redefines many of the foundational elements of how we understand population health. It should not be missed. "

Case Studies in System of Systems, Enterprise Systems, and Complex Systems Engineering

Author: Alex Gorod,Brian E. White,Vernon Ireland,S. Jimmy Gandhi,Brian Sauser

Publisher: CRC Press

ISBN: 1466502401

Category: Technology & Engineering

Page: 808

View: 6495

DOWNLOAD NOW »

Suitable as a reference for industry practitioners and as a textbook for classroom use, Case Studies in System of Systems, Enterprise Systems, and Complex Systems Engineering provides a clear understanding of the principles and practice of system of systems engineering (SoSE), enterprise systems engineering (ESE), and complex systems engineering (CSE). Multiple domain practitioners present and analyze case studies from a range of applications that demonstrate underlying principles and best practices of transdisciplinary systems engineering. A number of the case studies focus on addressing real human needs. Diverse approaches such as use of soft systems skills are illustrated, and other helpful techniques are also provided. The case studies describe, examine, analyze, and assess applications across a range of domains, including: Engineering management and systems engineering education Information technology business transformation and infrastructure engineering Cooperative framework for and cost management in the construction industry Supply chain modeling and decision analysis in distribution centers and logistics International development assistance in a foreign culture of education Value analysis in generating electrical energy through wind power Systemic risk and reliability assessment in banking Assessing emergencies and reducing errors in hospitals and health care systems Information fusion and operational resilience in disaster response systems Strategy and investment for capability developments in defense acquisition Layered, flexible, and decentralized enterprise architectures in military systems Enterprise transformation of the air traffic management and transport network Supplying you with a better understanding of SoSE, ESE, and CSE concepts and principles, the book highlights best practices and lessons learned as benchmarks that are applicable to other cases. If adopted correctly, the approaches outlined can facilitate significant progress in human affairs. The study of complex systems is still in its infancy, and it is likely to evolve for decades to come. While this book does not provide all the answers, it does establish a platform, through which analysis and knowledge application can take place and conclusions can be made in order to educate the next generation of systems engineers.

Handbook of Systems and Complexity in Health

Author: Joachim P Sturmberg,Carmel Martin

Publisher: Springer Science & Business Media

ISBN: 1461449987

Category: Medical

Page: 954

View: 5873

DOWNLOAD NOW »

This book is an introduction to health care as a complex adaptive system, a system that feeds back on itself. The first section introduces systems and complexity theory from a science, historical, epistemological, and technical perspective, describing the principles and mathematics. Subsequent sections build on the health applications of systems science theory, from human physiology to medical decision making, population health and health services research. The aim of the book is to introduce and expand on important population health issues from a systems and complexity perspective, highlight current research developments and their implications for health care delivery, consider their ethical implications, and to suggest directions for and potential pitfalls in the future.

Creating Brain-Like Intelligence

From Basic Principles to Complex Intelligent Systems

Author: Bernhard Sendhoff,Edgar Körner,Olaf Sporns,Helge Ritter,Kenji Doya

Publisher: Springer Science & Business Media

ISBN: 3642006159

Category: Medical

Page: 351

View: 8364

DOWNLOAD NOW »

TheInternationalSymposiumCreatingBrain-LikeIntelligencewasheldinFeb- ary 2007 in Germany. The symposium brought together notable scientists from di?erent backgrounds and with di?erent expertise related to the emerging ?eld of brain-like intelligence. Our understanding of the principles behind brain-like intelligence is still limited. After all, we have had to acknowledge that after tremendous advances in areas like neural networks, computational and arti?cial intelligence (a ?eld that had just celebrated its 50 year anniversary) and fuzzy systems, we are still not able to mimic even the lower-level sensory capabilities of humans or animals. We asked what the biggest obstacles are and how we could gain ground toward a scienti?c understanding of the autonomy, ?exibility, and robustness of intelligent biological systems as they strive to survive. New principles are usually found at the interfaces between existing disciplines, and traditional boundaries between disciplines have to be broken down to see how complex systems become simple and how the puzzle can be assembled. During the symposium we could identify some recurring themes that p- vaded many of the talks and discussions. The triad of structure, dynamics and environment,theroleoftheenvironmentasanactivepartnerinshapingsystems, adaptivity on all scales (learning, development, evolution) and the amalga- tion of an internal and external world in brain-like intelligence rate high among them. Each of us is rooted in a certain community which we have to serve with the results of our research. Looking beyond our ?elds and working at the interfaces between established areas of research requires e?ort and an active process.

An Introduction to Systems Biology

Design Principles of Biological Circuits

Author: Uri Alon

Publisher: CRC Press

ISBN: 1584886420

Category: Mathematics

Page: 320

View: 9425

DOWNLOAD NOW »

Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.

Principles of Cellular Engineering

Understanding the Biomolecular Interface

Author: Michael R. King

Publisher: Elsevier

ISBN: 9780080539638

Category: Science

Page: 320

View: 6464

DOWNLOAD NOW »

This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine. -Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses

The Science of Open Spaces

Theory and Practice for Conserving Large, Complex Systems

Author: Charles G. Curtin

Publisher: Island Press

ISBN: 159726993X

Category: Nature

Page: 255

View: 7454

DOWNLOAD NOW »

Tour the age of dinosaurs with this colorful, authoritative, easy-to-read field guide.

Entropy Principle for the Development of Complex Biotic Systems

Organisms, Ecosystems, the Earth

Author: Ichiro Aoki

Publisher: Elsevier

ISBN: 012394404X

Category: Science

Page: 122

View: 8481

DOWNLOAD NOW »

The concept of entropy in thermodynamics is a complex one, though it is fundamental in understanding physics, the workings of the mind, and biology. Entropy is the measure of the quality of energy, and it can also refer to the turn from order to disorder or randomness in isolated systems. In open systems, such as biology, entropy is formulated in terms of production and energy flow. This book establishes a novel view of complex biological systems and the earth using this concept of entropy, encompassing the interdisciplinary area of biology, ecology and physics. This book considers the development over time of a range of biologically complex systems such as plants, animals, humans, and ecosystems, describing them in terms of the second law of thermodynamics, entropy. With its broad coverage of biological systems, this book will be useful for students of environmental science as well as students in biology and physics. Includes discussion of multiple complex systems including the earth and biological systems within it. Suitable for those with little physics background who wish to learn how the laws of physics apply to ecological systems. Clearly organized by system, making information easy to access.