Partial Differential Equations

Theory and Completely Solved Problems

Author: Thomas Hillen,I. E. Leonard,Henry van Roessel

Publisher: John Wiley & Sons

ISBN: 1118438434

Category: Mathematics

Page: 696

View: 3496

DOWNLOAD NOW »

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Partial Differential Equations

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 1461448093

Category: Mathematics

Page: 410

View: 7046

DOWNLOAD NOW »

This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

Basic Partial Differential Equations

Author: David. Bleecker,George. Csordas

Publisher: CRC Press

ISBN: 9780412067617

Category: Mathematics

Page: 768

View: 2626

DOWNLOAD NOW »

Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.

Partial Differential Equations

Author: Lawrence C. Evans

Publisher: American Mathematical Soc.

ISBN: 0821849743

Category: Mathematics

Page: 749

View: 3367

DOWNLOAD NOW »

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University

Partial Differential Equations

Author: Fritz John

Publisher: Springer Science & Business Media

ISBN: 1461599660

Category: Mathematics

Page: 221

View: 496

DOWNLOAD NOW »

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. In the present edition, only minor corrections have been made in the text. An Index and up-to-date listing of books recommended for further study have been added. Fritz John New York November 19, 1970 v TABLE OF CONTENTS Introduetion 1 CHAPl'ER I - TEE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 The general first order equation for a funetion 2. of two variables. • • • • • • • • • 15 The general first order equation for a funetion 3. of n independent variables. • • • • • 37 CHAPl'ER II - TEE CAUCIIT PROBLEM FOR HIGEER ORDER EQUATIONS 1. Analytie funetions of several real variables • Formulation of the Cauehy problem. The not ion 2. of eharaeteristies. • • • 54 3. The Cauehy problem for the general non-linear equation. 71 4. The Cauehy-Kowalewsky theorem. 76 CHAPl'ER 111 - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Introduction to Partial Differential Equations

Author: Donald Greenspan

Publisher: Courier Corporation

ISBN: 0486150933

Category: Mathematics

Page: 204

View: 6273

DOWNLOAD NOW »

Designed for use in a 1-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, 2nd-order partial differential equations, wave equation, potential equation, heat equation, and more. Includes exercises. 1961 edition.

Partial Differential Equations

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 0387493190

Category: Mathematics

Page: 356

View: 563

DOWNLOAD NOW »

This book offers an ideal introduction to the theory of partial differential equations. It focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. It also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. It also explores connections between elliptic, parabolic, and hyperbolic equations as well as the connection with Brownian motion and semigroups. This second edition features a new chapter on reaction-diffusion equations and systems.

Elements of Partial Differential Equations

Author: Ian N. Sneddon

Publisher: Courier Corporation

ISBN: 0486162990

Category: Mathematics

Page: 352

View: 8369

DOWNLOAD NOW »

This text features numerous worked examples in its presentation of elements from the theory of partial differential equations, emphasizing forms suitable for solving equations. Solutions to odd-numbered problems appear at the end. 1957 edition.

Partial Differential Equations

Author: J. Wloka

Publisher: Cambridge University Press

ISBN: 9780521277594

Category: Mathematics

Page: 518

View: 2211

DOWNLOAD NOW »

A rigorous introduction to the abstract theory of partial differential equations progresses from the theory of distribution and Sobolev spaces to Fredholm operations, the Schauder fixed point theorem and Bochner integrals.

Principles of Partial Differential Equations

Author: Alexander Komech,Andrew Komech

Publisher: Springer Science & Business Media

ISBN: 1441910956

Category: Mathematics

Page: 161

View: 7027

DOWNLOAD NOW »

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations

An Introduction

Author: David Colton

Publisher: Courier Corporation

ISBN: 0486438341

Category: Mathematics

Page: 308

View: 1587

DOWNLOAD NOW »

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. Includes examples of inverse problems arising from improperly posed applications as well as exercises, many with answers. 1988 edition.

Applied Partial Differential Equations

Author: J. R. Ockendon

Publisher: Oxford University Press on Demand

ISBN: 9780198527718

Category: Science

Page: 449

View: 8667

DOWNLOAD NOW »

Partial differential equations are used in mathematical models of a huge range of real-world phenomena, from electromagnetism to financial markets. This revised edition of Applied Partial Differential Equations contains many new sections and exercises including transform methods, free surface flows, linear elasticity and complex characteristics.

Partial Differential Equations

An Introduction

Author: David Colton

Publisher: Courier Corporation

ISBN: 0486138437

Category: Mathematics

Page: 320

View: 9386

DOWNLOAD NOW »

This text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Features coverage of integral equations and basic scattering theory. Includes exercises, many with answers. 1988 edition.

Some Classes of Partial Differential Equations

Author: Andreĭ Vasilʹevich Bit͡sadze

Publisher: CRC Press

ISBN: 9782881246623

Category: Mathematics

Page: 504

View: 2134

DOWNLOAD NOW »

A systematic examination of classical and non-classical problems for linear partial differential equations and systems of elliptic, hyperbolic and mixed types. Among a number of difficult problems addressed are the Dirichlet and oblique derivative problems for non- uniformly elliptic equations and non-strongly elliptic systems and the Cauchy and Darloux problems for non-strongly hyperbolic systems and hyperbolic equations with parabolic degeneracy on the boundary. Written at a level suitable for undergraduate and graduate students and researchers. Individual price, $89. Annotation copyrighted by Book News, Inc., Portland, OR

Applied Partial Differential Equations

Author: J David Logan

Publisher: Springer

ISBN: 3319124935

Category: Mathematics

Page: 289

View: 3234

DOWNLOAD NOW »

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Partial Differential Equations in Action

From Modelling to Theory

Author: Sandro Salsa

Publisher: Springer

ISBN: 3319150936

Category: Mathematics

Page: 701

View: 3442

DOWNLOAD NOW »

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Mathematical Physics with Partial Differential Equations

Author: James R. Kirkwood

Publisher: Academic Press

ISBN: 0123869110

Category: Mathematics

Page: 418

View: 1892

DOWNLOAD NOW »

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations

Analytical and Numerical Methods, Second Edition

Author: Mark S. Gockenbach

Publisher: SIAM

ISBN: 0898719356

Category: Mathematics

Page: 654

View: 2560

DOWNLOAD NOW »

A fresh, forward-looking undergraduate textbook that treats the finite element method and classical Fourier series method with equal emphasis.

Partial Differential Equations

Author: Abdul-Majid Wazwaz

Publisher: CRC Press

ISBN: 9789058093691

Category: Mathematics

Page: 476

View: 9899

DOWNLOAD NOW »

This text gathers, revises and explains the newly developed Adomian decomposition method along with its modification and some traditional techniques.