Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)

Author: Richard Haberman

Publisher: Pearson

ISBN: 9780134995434

Category: Boundary value problems

Page: 784

View: 5337


This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 9189


Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Author: Nakhlé H. Asmar

Publisher: Prentice Hall


Category: Mathematics

Page: 802

View: 970


This example-rich reference fosters a smooth transition from elementary ordinary differential equations to more advanced concepts. Asmar's relaxed style and emphasis on applications make the material accessible even to readers with limited exposure to topics beyond calculus. Encourages computer for illustrating results and applications, but is also suitable for use without computer access. Contains more engineering and physics applications, and more mathematical proofs and theory of partial differential equations, than the first edition. Offers a large number of exercises per section. Provides marginal comments and remarks throughout with insightful remarks, keys to following the material, and formulas recalled for the reader's convenience. Offers Mathematica files available for download from the author's website. A useful reference for engineers or anyone who needs to brush up on partial differential equations.

Differential Equations with Boundary-Value Problems

Author: Dennis G. Zill,Warren S Wright

Publisher: Cengage Learning

ISBN: 1111827060

Category: Mathematics

Page: 664

View: 5992


DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 8th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Fourier Series and Boundary Value Problems

Author: James Ward Brown,Ruel Vance Churchill

Publisher: McGraw-Hill Science Engineering

ISBN: 9780072325706

Category: Mathematics

Page: 344

View: 4709


Published by McGraw-Hill since its first edition in 1941, this classic text is an introduction to Fourier series and their applications to boundary value problems in partial differential equations of engineering and physics. It will primarily be used by mathematics students with a background in ordinary differential equations and advanced calculus. There are two main objectives of this text. The first is to introduce the concept of orthogonal sets of functions and representations of arbitrary functions in series of functions from such sets. The second is a clear presentation of the classical method of separation of variables used in solving boundary value problems with the aid of those representations.

Differential Equations with Boundary Value Problems

An Introduction to Modern Methods & Applications

Author: James R. Brannan

Publisher: John Wiley & Sons

ISBN: 0470595353

Category: Mathematics

Page: 976

View: 5696


Unlike other books in the market, this second edition presents differential equations consistent with the way scientists and engineers use modern methods in their work. Technology is used freely, with more emphasis on modeling, graphical representation, qualitative concepts, and geometric intuition than on theoretical issues. It also refers to larger-scale computations that computer algebra systems and DE solvers make possible. And more exercises and examples involving working with data and devising the model provide scientists and engineers with the tools needed to model complex real-world situations.

A First Course in Partial Differential Equations

Author: J Robert Buchanan,Zhoude Shao

Publisher: World Scientific Publishing Company

ISBN: 9813226455

Category: Mathematics

Page: 624

View: 9720


Resources for instructors who adopt this textbook:Lecture SlidesInstructors' Manual (complete solutions and supporting work)Students' Manual (final answers to computational exercises) Kindly send your requests to [email protected] This textbook gives an introduction to Partial Differential Equations (PDEs), for any reader wishing to learn and understand the basic concepts, theory, and solution techniques of elementary PDEs. The only prerequisite is an undergraduate course in Ordinary Differential Equations. This work contains a comprehensive treatment of the standard second-order linear PDEs, the heat equation, wave equation, and Laplace's equation. First-order and some common nonlinear PDEs arising in the physical and life sciences, with their solutions, are also covered. This textbook includes an introduction to Fourier series and their properties, an introduction to regular Sturm–Liouville boundary value problems, special functions of mathematical physics, a treatment of nonhomogeneous equations and boundary conditions using methods such as Duhamel's principle, and an introduction to the finite difference technique for the numerical approximation of solutions. All results have been rigorously justified or precise references to justifications in more advanced sources have been cited. Appendices providing a background in complex analysis and linear algebra are also included for readers with limited prior exposure to those subjects. The textbook includes material from which instructors could create a one- or two-semester course in PDEs. Students may also study this material in preparation for a graduate school (masters or doctoral) course in PDEs. The lecture slides, instructors' manual and students' manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]

Fourier Series and Numerical Methods for Partial Differential Equations

Author: Richard Bernatz

Publisher: John Wiley & Sons

ISBN: 9780470651377

Category: Mathematics

Page: 332

View: 6270


The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

Introduction to Ordinary Differential Equations

Academic Press International Edition

Author: Albert L. Rabenstein

Publisher: Academic Press

ISBN: 1483226220

Category: Mathematics

Page: 444

View: 9860


Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Introduction to Partial Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 3319020994

Category: Mathematics

Page: 636

View: 3469


This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Boundary Value Problems

and Partial Differential Equations

Author: David L. Powers

Publisher: Academic Press

ISBN: 0080884415

Category: Mathematics

Page: 520

View: 1278


Boundary Value Problems, Sixth Edition, is the leading text on boundary value problems and Fourier series for professionals and students in engineering, science, and mathematics who work with partial differential equations. In this updated edition, author David Powers provides a thorough overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Additional techniques used include Laplace transform and numerical methods. The book contains nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises. Professors and students agree that Powers is a master at creating examples and exercises that skillfully illustrate the techniques used to solve science and engineering problems. Ancillary list: Online SSM- Online ISM- Companion site, Ebook- Student Solution Manual for Sixth Edition - New animations and graphics of solutions, additional exercises and chapter review questions on the web Nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises Many exercises based on current engineering applications

Vorlesungen über partielle Differentialgleichungen

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3540350314

Category: Mathematics

Page: 174

View: 8521


Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.

Fourier Series, Fourier Transform and Their Applications to Mathematical Physics

Author: Valery Serov

Publisher: Springer

ISBN: 3319652621

Category: Mathematics

Page: 534

View: 9200


This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory of partial differential equations. Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.

Applied Partial Differential Equations

Author: J. David Logan

Publisher: Springer

ISBN: 3319124935

Category: Mathematics

Page: 289

View: 9058


This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Methods of Applied Mathematics with a Software Overview

Author: Jon H. Davis

Publisher: Birkhäuser

ISBN: 3319433709

Category: Mathematics

Page: 781

View: 8340


Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.

Fourier Analysis

Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations

Author: Michael Ruzhansky,Ville Turunen

Publisher: Springer Science & Business Media

ISBN: 3319025503

Category: Mathematics

Page: 415

View: 1480


This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”