# Ordinary Differential Equations

An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 0486649407

Category: Mathematics

Page: 808

View: 9758

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

# Ordinary Differential Equations

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 9780486134642

Category: Mathematics

Page: 818

View: 6925

This unusually well-written, skillfully organized introductory text provides an exhaustive survey of ordinary differential equations — equations which express the relationship between variables and their derivatives. In a disarmingly simple, step-by-step style that never sacrifices mathematical rigor, the authors — Morris Tenenbaum of Cornell University, and Harry Pollard of Purdue University — introduce and explain complex, critically-important concepts to undergraduate students of mathematics, engineering and the sciences. The book begins with a section that examines the origin of differential equations, defines basic terms and outlines the general solution of a differential equation-the solution that actually contains every solution of such an equation. Subsequent sections deal with such subjects as: integrating factors; dilution and accretion problems; the algebra of complex numbers; the linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas; and Picard's Method of Successive Approximations. The book contains two exceptional chapters: one on series methods of solving differential equations, the second on numerical methods of solving differential equations. The first includes a discussion of the Legendre Differential Equation, Legendre Functions, Legendre Polynomials, the Bessel Differential Equation, and the Laguerre Differential Equation. Throughout the book, every term is clearly defined and every theorem lucidly and thoroughly analyzed, and there is an admirable balance between the theory of differential equations and their application. An abundance of solved problems and practice exercises enhances the value of Ordinary Differential Equations as a classroom text for undergraduate students and teaching professionals. The book concludes with an in-depth examination of existence and uniqueness theorems about a variety of differential equations, as well as an introduction to the theory of determinants and theorems about Wronskians.

# Ordinary Differential Equations

An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences

Author: Morris Tenenbaum,Harry Pollard

Publisher: N.A

ISBN: N.A

Category: Differential equations

Page: 808

View: 4921

# Ordinary Differential Equations

Author: Wolfgang Walter

Publisher: Springer Science & Business Media

ISBN: 1461206014

Category: Mathematics

Page: 384

View: 2357

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

# Ordinary Differential Equations

Author: Edward L. Ince

Publisher: Courier Corporation

ISBN: 0486158217

Category: Mathematics

Page: 576

View: 1492

Among the topics covered in this classic treatment are linear differential equations; solution in an infinite form; solution by definite integrals; algebraic theory; Sturmian theory and its later developments; much more. "Highly recommended" — Electronics Industries.

# Ordinary Differential Equations

Publisher: Springer Science & Business Media

ISBN: 9783540548133

Category: Mathematics

Page: 338

View: 909

Few books on Ordinary Differential Equations (ODEs) have the elegant geometric insight of this one, which puts emphasis on the qualitative and geometric properties of ODEs and their solutions, rather than on routine presentation of algorithms. From the reviews: "Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation." --SIAM REVIEW

# Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

ISBN: 9780486696201

Category: Mathematics

Page: 484

View: 4408

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.

# Ordinary Differential Equations

Qualitative Theory

Author: Luis Barreira,Claudia Valls

Publisher: American Mathematical Soc.

ISBN: 0821887491

Category: Mathematics

Page: 248

View: 2938

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

# Ordinary Differential Equations

A First Course

Author: D. Somasundaram

Publisher: CRC Press

ISBN: 9780849309885

Category: Mathematics

Page: 295

View: 549

Though ordinary differential equations is taught as a core course to students in mathematics and applied mathematics, detailed coverage of the topics with sufficient examples is unique. Written by a mathematics professor and intended as a textbook for third- and fourth-year undergraduates, the five chapters of this publication give a precise account of higher order differential equations, power series solutions, special functions, existence and uniqueness of solutions, and systems of linear equations. Relevant motivation for different concepts in each chapter and discussion of theory and problems-without the omission of steps-sets Ordinary Differential Equations: A First Course apart from other texts on ODEs. Full of distinguishing examples and containing exercises at the end of each chapter, this lucid course book will promote self-study among students.

# Ordinary Differential Equations

Author: George F. Carrier,Carl E. Pearson

Publisher: SIAM

ISBN: 9781611971293

Category: Differential equations

Page: 220

View: 9383

Offers an alternative to the "rote" approach of presenting standard categories of differential equations accompanied by routine problem sets. The exercises presented amplify and provide perspective for the material, often giving readers opportunity for ingenuity. Little or no previous acquaintance with the subject is required to learn usage of techniques for constructing solutions of differential equations in this reprint volume.

# Ordinary Differential Equations and Their Solutions

Author: George Moseley Murphy

Publisher: Courier Corporation

ISBN: 0486485919

Category: Mathematics

Page: 451

View: 8976

This treatment presents most of the methods for solving ordinary differential equations and systematic arrangements of more than 2,000 equations and their solutions. The material is organized so that standard equations can be easily found. Plus, the substantial number and variety of equations promises an exact equation or a sufficiently similar one. 1960 edition.

# An Introduction to Ordinary Differential Equations

Author: Earl A. Coddington

Publisher: Courier Corporation

ISBN: 0486131831

Category: Mathematics

Page: 320

View: 565

A thorough, systematic first course in elementary differential equations for undergraduates in mathematics and science, requiring only basic calculus for a background. Includes many exercises and problems, with answers. Index.

# Ordinary Differential Equations

Second Edition

Author: Philip Hartman

Publisher: SIAM

ISBN: 0898715105

Category: Mathematics

Page: 612

View: 2672

Covers the fundamentals of the theory of ordinary differential equations.

# INTRODUCTION TO THEORY OF ORDINARY DIFFERENTIAL EQUATION

Author: V. DHARMAIAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120346661

Category: Mathematics

Page: 420

View: 3022

This systematically-organized text on the theory of differential equations deals with the basic concepts and the methods of solving ordinary differential equations. Various existence theorems, properties of uniqueness, oscillation and stability theories, have all been explained with suitable examples to enhance students’ understanding of the subject. The book also discusses in sufficient detail the qualitative, the quantitative, and the approximation techniques, linear equations with variable and constants coefficients, regular singular points, and homogeneous equations with analytic coefficients. Finally, it explains Riccati equation, boundary value problems, the Sturm–Liouville problem, Green’s function, the Picard’s theorem, and the Sturm–Picone theorem. The text is supported by a number of worked-out examples to make the concepts clear, and it also provides a number of exercises help students test their knowledge and improve their skills in solving differential equations. The book is intended to serve as a text for the postgraduate students of mathematics and applied mathematics. It will also be useful to the candidates preparing to sit for the competitive examinations such as NET and GATE.

# Ordinary differential equations

Publisher: The MIT Press

ISBN: N.A

Category: Mathematics

Page: 84

View: 7075

# Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 6335

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

# Ordinary Differential Equations

Methods and Applications

Author: W. T. Ang,Y. S. Park

Publisher: Universal-Publishers

ISBN: 1599429756

Category: Mathematics

Page: 204

View: 2230

This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

# Ordinary Differential Equations with Applications to Mechanics

Author: Mircea Soare,Petre P. Teodorescu,Ileana Toma

Publisher: Springer Science & Business Media

ISBN: 1402054408

Category: Mathematics

Page: 488

View: 8723

This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

# Asymptotic Expansions for Ordinary Differential Equations

Author: Wolfgang Wasow

Publisher: Courier Dover Publications

ISBN: 0486824586

Category: Mathematics

Page: 384

View: 1696

This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.

# Ordinary Differential Equations

Author: Michael D. Greenberg

Publisher: John Wiley & Sons

ISBN: 1118243404

Category: Mathematics

Page: 544

View: 2256