Numerical Algorithms

Methods for Computer Vision, Machine Learning, and Graphics

Author: Justin Solomon

Publisher: CRC Press

ISBN: 1482251892

Category: Computers

Page: 400

View: 8232

DOWNLOAD NOW »

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic design from a practical standpoint and provides insight into the theoretical tools needed to support these skills. The book covers a wide range of topics—from numerical linear algebra to optimization and differential equations—focusing on real-world motivation and unifying themes. It incorporates cases from computer science research and practice, accompanied by highlights from in-depth literature on each subtopic. Comprehensive end-of-chapter exercises encourage critical thinking and build students’ intuition while introducing extensions of the basic material. The text is designed for advanced undergraduate and beginning graduate students in computer science and related fields with experience in calculus and linear algebra. For students with a background in discrete mathematics, the book includes some reminders of relevant continuous mathematical background.

Numerical Algorithms with C

Author: Giesela Engeln-Müllges,Frank Uhlig

Publisher: Springer Science & Business Media

ISBN: 3642610749

Category: Mathematics

Page: 597

View: 8108

DOWNLOAD NOW »

More scientists now use C than any other programming language. This book contains practical, computer-ready algorithms for many standard methods of numerical mathematics. It describes the principles of the various methods and provides support in choosing the appropriate method for a given task. Topics given special emphasis include converging methods for solving nonlinear equations, methods for solving systems of linear equations for many special matrix structures, and the Shepard method for multidimensional interpolation. The CD contains C-programs for almost all the algorithms given in the book and a compiler, together with software for graphical printing.

Matrix Methods in Data Mining and Pattern Recognition

Author: Lars Elden

Publisher: SIAM

ISBN: 0898716268

Category: Computers

Page: 224

View: 1720

DOWNLOAD NOW »

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.

Computer Vision

Algorithms and Applications

Author: Richard Szeliski

Publisher: Springer Science & Business Media

ISBN: 9781848829350

Category: Computers

Page: 812

View: 8234

DOWNLOAD NOW »

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques. Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 6897

DOWNLOAD NOW »

This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Numerical Analysis for Statisticians

Author: Kenneth Lange

Publisher: Springer Science & Business Media

ISBN: 1441959459

Category: Business & Economics

Page: 600

View: 3392

DOWNLOAD NOW »

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

Introduction to Numerical Programming

A Practical Guide for Scientists and Engineers Using Python and C/C++

Author: Titus A. Beu

Publisher: CRC Press

ISBN: 1466569670

Category: Mathematics

Page: 674

View: 9393

DOWNLOAD NOW »

Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.

Finite-Dimensional Linear Algebra

Author: Mark S. Gockenbach

Publisher: CRC Press

ISBN: 143981564X

Category: Mathematics

Page: 672

View: 857

DOWNLOAD NOW »

Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jordan canonical form, an important theoretical tool, and the singular value decomposition, a powerful tool for computation. The final chapters present introductions to numerical linear algebra and analysis in vector spaces, including a brief introduction to functional analysis (infinite-dimensional linear algebra). Drawing on material from the author’s own course, this textbook gives students a strong theoretical understanding of linear algebra. It offers many illustrations of how linear algebra is used throughout mathematics.

Level Set Methods and Dynamic Implicit Surfaces

Author: Stanley Osher,Ronald Fedkiw

Publisher: Springer Science & Business Media

ISBN: 0387227466

Category: Mathematics

Page: 273

View: 9746

DOWNLOAD NOW »

Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area

Scientific Computing

An Introductory Survey

Author: Michael T. Heath

Publisher: McGraw-Hill Europe

ISBN: 9780071244893

Category: Numerical analysis

Page: 563

View: 3882

DOWNLOAD NOW »

This Auditing practice set incorporates both the cycles and the risk approach using the audit risk model. Students will learn to design and prepare the current year's working papers and assemble the completed case. Taking about 30 hours to complete, this practice set can be used with any Auditing textbook.

Multiple View Geometry in Computer Vision

Author: Richard Hartley,Andrew Zisserman

Publisher: Cambridge University Press

ISBN: 1139449141

Category: Computers

Page: N.A

View: 4613

DOWNLOAD NOW »

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Guide to Scientific Computing in C++

Author: Joe Pitt-Francis,Jonathan Whiteley

Publisher: Springer Science & Business Media

ISBN: 1447127366

Category: Computers

Page: 250

View: 5324

DOWNLOAD NOW »

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.

Modern Mathematics and Applications in Computer Graphics and Vision

Author: Hongyu Guo

Publisher: World Scientific Publishing Company

ISBN: 9814449350

Category: Computers

Page: 524

View: 317

DOWNLOAD NOW »

This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts — Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning. There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter — almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.

Numerical Methods

Design, Analysis, and Computer Implementation of Algorithms

Author: Anne Greenbaum,Timothy P. Chartier

Publisher: Princeton University Press

ISBN: 1400842670

Category: Mathematics

Page: 464

View: 658

DOWNLOAD NOW »

Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online

Numerical Optimization

Author: Jorge Nocedal,Stephen Wright

Publisher: Springer Science & Business Media

ISBN: 0387400656

Category: Mathematics

Page: 664

View: 3059

DOWNLOAD NOW »

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Deep Learning

Author: Ian Goodfellow,Yoshua Bengio,Aaron Courville

Publisher: MIT Press

ISBN: 0262035618

Category: Computers

Page: 800

View: 4945

DOWNLOAD NOW »

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

Accuracy and Stability of Numerical Algorithms

Second Edition

Author: Nicholas J. Higham

Publisher: SIAM

ISBN: 9780898718027

Category: Computer algorithms

Page: 680

View: 1026

DOWNLOAD NOW »

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.

Introduction to Numerical Linear Algebra and Optimisation

Author: Philippe G. Ciarlet,Bernadette Miara,Jean-Marie Thomas

Publisher: Cambridge University Press

ISBN: 9780521339841

Category: Computers

Page: 436

View: 4142

DOWNLOAD NOW »

Based on courses taught to advanced undergraduate students, this book offers a broad introduction to the methods of numerical linear algebra and optimization. The prerequisites are familiarity with the basic properties of matrices, finite-dimensional vector spaces and advanced calculus, and some exposure to fundamental notions from functional analysis. The book is divided into two parts. The first part deals with numerical linear algebra (numerical analysis of matrices, direct and indirect methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimizations (general algorithms, linear and nonlinear programming). Summaries of basic mathematics are provided, proof of theorems are complete yet kept as simple as possible, applications from physics and mechanics are discussed, a great many exercises are included, and there is a useful guide to further reading.

Sparse Optimization Theory and Methods

Author: Yun-Bin Zhao

Publisher: CRC Press

ISBN: 1351624148

Category: Business & Economics

Page: 284

View: 6342

DOWNLOAD NOW »

Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author’s latest research in the field that have not appeared in other books.