Nonlinear Time Series

Nonparametric and Parametric Methods

Author: Jianqing Fan,Qiwei Yao

Publisher: Springer Science & Business Media

ISBN: 9780387693958

Category: Mathematics

Page: 552

View: 9342

DOWNLOAD NOW »

This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.

Elements of Nonlinear Time Series Analysis and Forecasting

Author: Jan G. De Gooijer

Publisher: Springer

ISBN: 3319432524

Category: Mathematics

Page: 618

View: 4893

DOWNLOAD NOW »

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.

Semiparametric and Nonparametric Methods in Econometrics

Author: Joel L. Horowitz

Publisher: Springer Science & Business Media

ISBN: 9780387928708

Category: Business & Economics

Page: 276

View: 8388

DOWNLOAD NOW »

Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency. The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented. This book updates and greatly expands the author’s previous book on semiparametric methods in econometrics. Nearly half of the material is new.

Handbook of Statistics

Time Series Analysis: Methods and Applications

Author: N.A

Publisher: Elsevier

ISBN: 0444538631

Category: Mathematics

Page: 776

View: 1376

DOWNLOAD NOW »

The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respective areas

New Directions in Time Series Analysis

Author: David Brillinger,Peter Caines,John Geweke,Emanuel Parzen,Murray Rosenblatt,Murad S. Taqqu

Publisher: Springer Science & Business Media

ISBN: 1461392969

Category: Mathematics

Page: 382

View: 3742

DOWNLOAD NOW »

This IMA Volume in Mathematics and its Applications NEW DIRECTIONS IN TIME SERIES ANALYSIS, PART II is based on the proceedings of the IMA summer program "New Directions in Time Series Analysis. " We are grateful to David Brillinger, Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad Taqqu for organizing the program and we hope that the remarkable excitement and enthusiasm of the participants in this interdisciplinary effort are communicated to the reader. A vner Friedman Willard Miller, Jr. PREFACE Time Series Analysis is truly an interdisciplinary field because development of its theory and methods requires interaction between the diverse disciplines in which it is applied. To harness its great potential, strong interaction must be encouraged among the diverse community of statisticians and other scientists whose research involves the analysis of time series data. This was the goal of the IMA Workshop on "New Directions in Time Series Analysis. " The workshop was held July 2-July 27, 1990 and was organized by a committee consisting of Emanuel Parzen (chair), David Brillinger, Murray Rosenblatt, Murad S. Taqqu, John Geweke, and Peter Caines. Constant guidance and encouragement was provided by Avner Friedman, Director of the IMA, and his very helpful and efficient staff. The workshops were organized by weeks. It may be of interest to record the themes that were announced in the IMA newsletter describing the workshop: l.

Statistical Models and Methods for Financial Markets

Author: Tze Leung Lai,Haipeng Xing

Publisher: Springer Science & Business Media

ISBN: 0387778276

Category: Business & Economics

Page: 356

View: 7527

DOWNLOAD NOW »

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Bayesian and Frequentist Regression Methods

Author: Jon Wakefield

Publisher: Springer Science & Business Media

ISBN: 1441909257

Category: Mathematics

Page: 697

View: 6387

DOWNLOAD NOW »

Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.

Time Series Analysis and Its Applications

With R Examples

Author: Robert H. Shumway,David S. Stoffer

Publisher: Springer

ISBN: 3319524526

Category: Mathematics

Page: 562

View: 6009

DOWNLOAD NOW »

The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.

Nonparametric and Semiparametric Models

Author: Wolfgang Härdle,Marlene Müller,Stefan Sperlich,Axel Werwatz

Publisher: Springer Science & Business Media

ISBN: 364217146X

Category: Mathematics

Page: 300

View: 9202

DOWNLOAD NOW »

The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.

A Distribution-Free Theory of Nonparametric Regression

Author: László Györfi,Michael Kohler,Adam Krzyzak,Harro Walk

Publisher: Springer Science & Business Media

ISBN: 0387224424

Category: Mathematics

Page: 650

View: 9714

DOWNLOAD NOW »

This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.

Climate Time Series Analysis

Classical Statistical and Bootstrap Methods

Author: Manfred Mudelsee

Publisher: Springer Science & Business Media

ISBN: 9789048194827

Category: Science

Page: 474

View: 8010

DOWNLOAD NOW »

Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Nonlinear Time Series Analysis

Author: Ruey S. Tsay,Rong Chen

Publisher: John Wiley & Sons

ISBN: 1119264073

Category: Mathematics

Page: 512

View: 8233

DOWNLOAD NOW »

A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.

Robust and Nonlinear Time Series Analysis

Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 “Stochastische Mathematische Modelle”, Heidelberg 1983

Author: J. Franke,W. Härdle,D. Martin

Publisher: Springer Science & Business Media

ISBN: 1461578213

Category: Mathematics

Page: 286

View: 3516

DOWNLOAD NOW »

Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model.

Nonlinear Time Series Analysis

Methods and Applications

Author: Cees Diks

Publisher: World Scientific

ISBN: 9814496006

Category: Science

Page: 220

View: 7181

DOWNLOAD NOW »

Methods of nonlinear time series analysis are discussed from a dynamical systems perspective on the one hand, and from a statistical perspective on the other. After giving an informal overview of the theory of dynamical systems relevant to the analysis of deterministic time series, time series generated by nonlinear stochastic systems and spatio-temporal dynamical systems are considered. Several statistical methods for the analysis of nonlinear time series are presented and illustrated with applications to physical and physiological time series. Contents: Nonlinear Dynamical SystemsStochastic Time SeriesA Test for ReversibilityDetecting Differences between Reconstruction MeasuresEstimating Invariants of Noisy AttractorsThe Correlation Integral of Noisy AttractorsSpiral Wave Tip DynamicsSpatio-Temporal Chaos: A Solvable Model Readership: Students and researchers with an interest in time series analysis. Keywords:

Nonparametric Functional Estimation and Related Topics

Author: George Roussas

Publisher: Springer Science & Business Media

ISBN: 9401132224

Category: Mathematics

Page: 708

View: 6025

DOWNLOAD NOW »

About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.

Empirical Process Techniques for Dependent Data

Author: Herold Dehling,Thomas Mikosch,Michael Sörensen

Publisher: Springer Science & Business Media

ISBN: 1461200997

Category: Mathematics

Page: 383

View: 3668

DOWNLOAD NOW »

Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,

Frontiers in Statistics

Dedicated to Peter John Bickel in Honor of His 65th Birthday

Author: Jianqing Fan

Publisher: World Scientific

ISBN: 1860946704

Category: Mathematics

Page: 523

View: 7319

DOWNLOAD NOW »

During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel's distinguished contributions.

Parametric and Nonparametric Inference from Record-Breaking Data

Author: Sneh Gulati,William J. Padgett

Publisher: Springer Science & Business Media

ISBN: 0387215492

Category: Mathematics

Page: 117

View: 3794

DOWNLOAD NOW »

By providing a comprehensive look at statistical inference from record-breaking data in both parametric and nonparametric settings, this book treats the area of nonparametric function estimation from such data in detail. Its main purpose is to fill this void on general inference from record values. Statisticians, mathematicians, and engineers will find the book useful as a research reference. It can also serve as part of a graduate-level statistics or mathematics course.

Non-linear Time Series

A Dynamical System Approach

Author: Howell Tong

Publisher: Oxford University Press

ISBN: 0198523009

Category: Mathematics

Page: 564

View: 4385

DOWNLOAD NOW »

The analysis of time series data has for many years been a central component of statistical research and practice. Although the theory of linear time series is now well established, that of non-linear time series is still a rapidly developing subject. This book, now available in paperback, is an introduction to some of these developments and the present state of research.