Microelectronic Circuit Design for Energy Harvesting Systems

Author: Maurizio Di Paolo Emilio

Publisher: Springer

ISBN: 3319475878

Category: Technology & Engineering

Page: 169

View: 6872

DOWNLOAD NOW »

This book describes the design of microelectronic circuits for energy harvesting, broadband energy conversion, new methods and technologies for energy conversion. The author also discusses the design of power management circuits and the implementation of voltage regulators. Coverage includes advanced methods in low and high power electronics, as well as principles of micro-scale design based on piezoelectric, electromagnetic and thermoelectric technologies with control and conditioning circuit design.

Applications of Artificial Intelligence Techniques in Engineering

SIGMA 2018

Author: Hasmat Malik,Smriti Srivastava,Yog Raj Sood,Aamir Ahmad

Publisher: Springer

ISBN: 9811318190

Category: Computers

Page: 643

View: 8104

DOWNLOAD NOW »

The book is a collection of high-quality, peer-reviewed innovative research papers from the International Conference on Signals, Machines and Automation (SIGMA 2018) held at Netaji Subhas Institute of Technology (NSIT), Delhi, India. The conference offered researchers from academic and industry the opportunity to present their original work and exchange ideas, information, techniques and applications in the field of computational intelligence, artificial intelligence and machine intelligence. The book is divided into two volumes discussing a wide variety of industrial, engineering and scientific applications of the emerging techniques.

Energy Harvesting Technologies

Author: Shashank Priya,Daniel J. Inman

Publisher: Springer Science & Business Media

ISBN: 038776464X

Category: Technology & Engineering

Page: 524

View: 9132

DOWNLOAD NOW »

Energy Harvesting Technologies provides a cohesive overview of the fundamentals and current developments in the field of energy harvesting. In a well-organized structure, this volume discusses basic principles for the design and fabrication of bulk and MEMS based vibration energy systems, theory and design rules required for fabrication of efficient electronics, in addition to recent findings in thermoelectric energy harvesting systems. Combining leading research from both academia and industry onto a single platform, Energy Harvesting Technologies serves as an important reference for researchers and engineers involved with power sources, sensor networks and smart materials.

Handbook of Energy Harvesting Power Supplies and Applications

Author: Peter Spies,Markus Pollak,Loreto Mateu

Publisher: CRC Press

ISBN: 9814303062

Category: Science

Page: 592

View: 4023

DOWNLOAD NOW »

This book describes the fundamentals and principles of energy harvesting and provides the necessary theory and background to develop energy harvesting power supplies. It explains the overall system design and gives quantitative assumptions on environmental energy. It explains different system blocks for an energy harvesting power supply and the trade-offs. The text covers in detail different energy transducer technologies such as piezoelectric, electrodynamic, and thermoelectric generators and solar cells from the material to the component level and explains the appropriate power management circuits required in these systems. Furthermore, it describes and compares storage elements such as secondary batteries and supercapacitors to select the most appropriate one for the application. Besides power supplies that use ambient energy, the book presents systems that use electromagnetic fields in the radio frequency range. Finally, it discusses different application fields and presents examples of self-powered electronic systems to illustrate the content of the preceding chapters.

Electromagnetic Vibration Energy Harvesting Devices

Architectures, Design, Modeling and Optimization

Author: Dirk Spreemann,Yiannos Manoli

Publisher: Springer Science & Business Media

ISBN: 9400729448

Category: Technology & Engineering

Page: 198

View: 2776

DOWNLOAD NOW »

Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance.

Energy Harvesting for Self-Powered Wearable Devices

Author: Mohammad Alhawari,Baker Mohammad,Hani Saleh,Mohammed Ismail

Publisher: Springer

ISBN: 3319625780

Category: Technology & Engineering

Page: 99

View: 1875

DOWNLOAD NOW »

This book discusses the design and implementation of energy harvesting systems targeting wearable devices. The authors describe in detail the different energy harvesting sources that can be utilized for powering low-power devices in general, focusing on the best candidates for wearable applications. Coverage also includes state-of-the-art interface circuits, which can be used to accept energy from harvesters and deliver it to a device in the most efficient way. Finally, the authors present power management circuits for using multiple energy harvesting sources at the same time to power devices and to enhance efficiency of the system.

Energy Harvesting Systems

Principles, Modeling and Applications

Author: Tom J. Kaźmierski,Steve Beeby

Publisher: Springer Science & Business Media

ISBN: 1441975667

Category: Technology & Engineering

Page: 163

View: 5711

DOWNLOAD NOW »

Kinetic energy harvesting converts movement or vibrations into electrical energy, enables battery free operation of wireless sensors and autonomous devices and facilitates their placement in locations where replacing a battery is not feasible or attractive. This book provides an introduction to operating principles and design methods of modern kinetic energy harvesting systems and explains the implications of harvested power on autonomous electronic systems design. It describes power conditioning circuits that maximize available energy and electronic systems design strategies that minimize power consumption and enable operation. The principles discussed in the book will be supported by real case studies such as battery-less monitoring sensors at water waste processing plants, embedded battery-less sensors in automotive electronics and sensor-networks built with ultra-low power wireless nodes suitable for battery-less applications.

CMOS Circuits for Piezoelectric Energy Harvesters

Efficient Power Extraction, Interface Modeling and Loss Analysis

Author: Thorsten Hehn,Yiannos Manoli

Publisher: Springer

ISBN: 9401792887

Category: Technology & Engineering

Page: 204

View: 3141

DOWNLOAD NOW »

This book deals with the challenge of exploiting ambient vibrational energy which can be used to power small and low-power electronic devices, e.g. wireless sensor nodes. Generally, particularly for low voltage amplitudes, low-loss rectification is required to achieve high conversion efficiency. In the special case of piezoelectric energy harvesting, pulsed charge extraction has the potential to extract more power compared to a single rectifier. For this purpose, a fully autonomous CMOS integrated interface circuit for piezoelectric generators which fulfills these requirements is presented. Due to these key properties enabling universal usage, other CMOS designers working in the field of energy harvesting will be encouraged to use some of the shown structures for their own implementations. The book is unique in the sense that it highlights the design process from scratch to the final chip. Hence, it gives the designer a comprehensive guide of how to (i) setup an appropriate harvester model to get realistic simulation results, (ii) design the integrated circuits for low power operation, (iii) setup a laboratory measurement environment in order to extensively characterize the chip in combination with the real harvester and finally, (iv) interpret the simulation/measurement results in order to improve the chip performance. Since the dimensions of all devices (transistors, resistors etc.) are given, readers and other designers can easily re-use the presented circuit concepts.

CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications

Author: Carlos Manuel Ferreira Carvalho,Nuno Filipe Silva Veríssimo Paulino

Publisher: Springer

ISBN: 3319216171

Category: Technology & Engineering

Page: 216

View: 9925

DOWNLOAD NOW »

This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.

Electrostatic Kinetic Energy Harvesting

Author: Philippe Basset,Elena Blokhina,Dimitri Galayko

Publisher: John Wiley & Sons

ISBN: 1848217161

Category: Technology & Engineering

Page: 244

View: 6228

DOWNLOAD NOW »

Harvesting kinetic energy is a good opportunity to power wireless sensor in a vibratory environment. Besides classical methods based on electromagnetic and piezoelectric mechanisms, electrostatic transduction has a great perspective in particular when dealing with small devices based on MEMS technology. This book describes in detail the principle of such capacitive Kinetic Energy Harvesters based on a spring-mass system. Specific points related to the design and operation of kinetic energy harvesters (KEHs) with a capacitive interface are presented in detail: advanced studies on their nonlinear features, typical conditioning circuits and practical MEMS fabrication.

Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits

Author: Nele Reynders,Wim Dehaene

Publisher: Springer

ISBN: 3319161369

Category: Technology & Engineering

Page: 192

View: 5571

DOWNLOAD NOW »

This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.

Sub-threshold Design for Ultra Low-Power Systems

Author: Alice Wang,Benton Highsmith Calhoun,Anantha P. Chandrakasan

Publisher: Springer Science & Business Media

ISBN: 0387345019

Category: Technology & Engineering

Page: 209

View: 6873

DOWNLOAD NOW »

Based on the work of MIT graduate students Alice Wang and Benton Calhoun, this book surveys the field of sub-threshold and low-voltage design and explores such aspects of sub-threshold circuit design as modeling, logic and memory circuit design. One important chapter of the book is dedicated to optimizing energy dissipation - a key metric for energy constrained designs. This book also includes invited chapters on the subject of analog sub-threshold circuits.

CMOS Circuits for Electromagnetic Vibration Transducers

Interfaces for Ultra-Low Voltage Energy Harvesting

Author: Dominic Maurath,Yiannos Manoli

Publisher: Springer

ISBN: 9401792720

Category: Technology & Engineering

Page: 300

View: 1421

DOWNLOAD NOW »

Chip-integrated power management solutions are a must for ultra-low power systems. This enables not only the optimization of innovative sensor applications. It is also essential for integration and miniaturization of energy harvesting supply strategies of portable and autonomous monitoring systems. The book particularly addresses interfaces for energy harvesting, which are the key element to connect micro transducers to energy storage elements. Main features of the book are: - A comprehensive technology and application review, basics on transducer mechanics, fundamental circuit and control design, prototyping and testing, up to sensor system supply and applications. - Novel interfacing concepts - including active rectifiers, MPPT methods for efficient tracking of DC as well as AC sources, and a fully-integrated charge pump for efficient maximum AC power tracking at sub-100μW ultra-low power levels. The chips achieve one of widest presented operational voltage range in standard CMOS technology: 0.44V to over 4.1V. - Two special chapters on analog circuit design – it studies benefits and obstacles on implemented chip prototypes with three goals: ultra- low power, wide supply voltage range, and integration with standard technologies. Alternative design approaches are pursued using bulk-input transistor stages in forward-bias operation for amplifiers, modulators, and references. - Comprehensive Appendix – with additional fundamental analysis, design and scaling guidelines, circuit implementation tables and dimensions, schematics, source code listings, bill of material, etc. The discussed prototypes and given design guidelines are tested with real vibration transducer devices. The intended readership is graduate students in advanced courses, academics and lecturers, R&D engineers.

Energy Harvesting with Functional Materials and Microsystems

Author: Madhu Bhaskaran,Sharath Sriram,Krzysztof Iniewski

Publisher: CRC Press

ISBN: 1466587253

Category: Science

Page: 289

View: 3987

DOWNLOAD NOW »

For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growing field of energy harvesting from a materials and device perspective, with resulting technologies capable of enabling low-power implantable sensors or a large-scale electrical grid. In addition to the design, implementation, and components of energy-efficient electronics, the book covers current advances in energy-harvesting materials and technology, including: High-efficiency solar technologies with lower cost than existing silicon-based photovoltaics Novel piezoelectric technologies utilizing mechanical energy from vibrations and pressure The ability to harness thermal energy and temperature profiles with thermoelectric materials Whether you’re a practicing engineer, academician, graduate student, or entrepreneur looking to invest in energy-harvesting devices, this book is your complete guide to fundamental materials and applied microsystems for energy harvesting.

Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation

20th International Workshop, PATMOS 2010, Grenoble, France, September 7-10, 2010, Revised Selected Papers

Author: Rene van Leuken,Gilles Sicard

Publisher: Springer Science & Business Media

ISBN: 3642177514

Category: Computers

Page: 260

View: 4824

DOWNLOAD NOW »

This book constitutes the refereed proceedings of the 20th International Conference on Integrated Circuit and System Design, PATMOS 2010, held in Grenoble, France, in September 2010. The 24 revised full papers presented and the 9 extended abstracts were carefully reviewed and are organized in topical sections on design flows; circuit techniques; low power circuits; self-timed circuits; process variation; high-level modeling of poweraware heterogeneous designs in SystemC-AMS; and minalogic.

Energy Scavenging for Wireless Sensor Networks

with Special Focus on Vibrations

Author: Shad Roundy,Paul Kenneth Wright,Jan M. Rabaey

Publisher: Springer Science & Business Media

ISBN: 1461504856

Category: Technology & Engineering

Page: 212

View: 6808

DOWNLOAD NOW »

The vast reduction in size and power consumption of CMOS circuitry has led to a large research effort based around the vision of wireless sensor networks. The proposed networks will be comprised of thousands of small wireless nodes that operate in a multi-hop fashion, replacing long transmission distances with many low power, low cost wireless devices. The result will be the creation of an intelligent environment responding to its inhabitants and ambient conditions. Wireless devices currently being designed and built for use in such environments typically run on batteries. However, as the networks increase in number and the devices decrease in size, the replacement of depleted batteries will not be practical. The cost of replacing batteries in a few devices that make up a small network about once per year is modest. However, the cost of replacing thousands of devices in a single building annually, some of which are in areas difficult to access, is simply not practical. Another approach would be to use a battery that is large enough to last the entire lifetime of the wireless sensor device. However, a battery large enough to last the lifetime of the device would dominate the overall system size and cost, and thus is not very attractive. Alternative methods of powering the devices that will make up the wireless networks are desperately needed.

Micro Energy Harvesting

Author: Danick Briand,Eric Yeatman,Shad Roundy,Oliver Brand,Gary K. Fedder,Christofer Hierold,Jan G. Korvink,Osamu Tabata

Publisher: John Wiley & Sons

ISBN: 3527319026

Category: Technology & Engineering

Page: 490

View: 1160

DOWNLOAD NOW »

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Near Threshold Computing

Technology, Methods and Applications

Author: Michael Hübner,Cristina Silvano

Publisher: Springer

ISBN: 3319233890

Category: Technology & Engineering

Page: 100

View: 8361

DOWNLOAD NOW »

This book explores near-threshold computing (NTC), a design-space using techniques to run digital chips (processors) near the lowest possible voltage. Readers will be enabled with specific techniques to design chips that are extremely robust; tolerating variability and resilient against errors. Variability-aware voltage and frequency allocation schemes will be presented that will provide performance guarantees, when moving toward near-threshold manycore chips. · Provides an introduction to near-threshold computing, enabling reader with a variety of tools to face the challenges of the power/utilization wall; · Demonstrates how to design efficient voltage regulation, so that each region of the chip can operate at the most efficient voltage and frequency point; · Investigates how performance guarantees can be ensured when moving towards NTC manycores through variability-aware voltage and frequency allocation schemes.

Piezoelectric Energy Harvesting

Author: Alper Erturk,Daniel J. Inman

Publisher: John Wiley & Sons

ISBN: 9781119991359

Category: Technology & Engineering

Page: 416

View: 4411

DOWNLOAD NOW »

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.