Matrix Groups for Undergraduates

Second Edition

Author: Kristopher Tapp

Publisher: American Mathematical Soc.

ISBN: 1470427222

Category: Compact groups

Page: 239

View: 3521

DOWNLOAD NOW »

Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.

Matrix Groups

An Introduction to Lie Group Theory

Author: Andrew Baker

Publisher: Springer Science & Business Media

ISBN: 1447101839

Category: Mathematics

Page: 330

View: 7297

DOWNLOAD NOW »

This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.

Mostly Surfaces

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

ISBN: 0821853686

Category: Mathematics

Page: 314

View: 612

DOWNLOAD NOW »

This book presents a number of topics related to surfaces, such as Euclidean, spherical and hyperbolic geometry, the fundamental group, universal covering surfaces, Riemannian manifolds, the Gauss-Bonnet Theorem, and the Riemann mapping theorem. The main idea is to get to some interesting mathematics without too much formality. The book also includes some material only tangentially related to surfaces, such as the Cauchy Rigidity Theorem, the Dehn Dissection Theorem, and the Banach-Tarski Theorem.

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigourous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis.

Lie Groups

A Problem Oriented Introduction Via Matrix Groups

Author: Harriet Pollatsek

Publisher: MAA

ISBN: 9780883857595

Category: Mathematics

Page: 177

View: 4430

DOWNLOAD NOW »

The work of the Norwegian mathematician Sophus Lie extends ideas of symmetry and leads to many applications in mathematics and physics. Ordinarily, the study of the "objects" in Lie's theory (Lie groups and Lie algebras) requires extensive mathematical prerequisites beyond the reach of the typical undergraduate. By restricting to the special case of matrix Lie groups and relying on ideas from multivariable calculus and linear algebra, this lovely and important material becomes accessible even to college sophomores. Working with Lie's ideas fosters an appreciation of the unity of mathematics and the sometimes surprising ways in which mathematics provides a language to describe and understand the physical world.Lie Groups is an active learning text that can be used by students with a range of backgrounds and interests. The material is developed through 200 carefully chosen problems. This is the only book in the undergraduate curriculum to bring this material to students so early in their mathematical careers.

Symmetry

A Mathematical Exploration

Author: Kristopher Tapp

Publisher: Springer Science & Business Media

ISBN: 9781461402992

Category: Mathematics

Page: 215

View: 2862

DOWNLOAD NOW »

This textbook is perfect for a math course for non-math majors, with the goal of encouraging effective analytical thinking and exposing students to elegant mathematical ideas. It includes many topics commonly found in sampler courses, like Platonic solids, Euler’s formula, irrational numbers, countable sets, permutations, and a proof of the Pythagorean Theorem. All of these topics serve a single compelling goal: understanding the mathematical patterns underlying the symmetry that we observe in the physical world around us. The exposition is engaging, precise and rigorous. The theorems are visually motivated with intuitive proofs appropriate for the intended audience. Students from all majors will enjoy the many beautiful topics herein, and will come to better appreciate the powerful cumulative nature of mathematics as these topics are woven together into a single fascinating story about the ways in which objects can be symmetric.

Matrix Groups

Author: M. L. Curtis

Publisher: Springer Science & Business Media

ISBN: 1461252865

Category: Mathematics

Page: 228

View: 1631

DOWNLOAD NOW »

These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.

From Groups to Geometry and Back

Author: Vaughn Climenhaga,Anatole Katok

Publisher: American Mathematical Soc.

ISBN: 1470434792

Category: Geometry

Page: 420

View: 7058

DOWNLOAD NOW »

Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.

Introduction to Modern Algebra and Matrix Theory

Second Edition

Author: O. Schreier,E. Sperner

Publisher: Courier Corporation

ISBN: 0486278654

Category: Mathematics

Page: 400

View: 8741

DOWNLOAD NOW »

This unique text provides students with a basic course in both calculus and analytic geometry — no competitive editions cover both topics in a single volume. Its prerequisites are minimal, and the order of its presentation promotes an intuitive approach to calculus. Algebraic concepts receive an unusually strong emphasis. Numerous exercises appear throughout the text. 1951 edition.

Winding Around: The Winding Number in Topology, Geometry, and Analysis

Author: John Roe

Publisher: American Mathematical Soc.

ISBN: 1470421984

Category: Algebraic topology

Page: 269

View: 5962

DOWNLOAD NOW »

The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.

Applied Linear Algebra and Matrix Analysis

Author: Thomas S. Shores

Publisher: Springer

ISBN: 3319747487

Category: Mathematics

Page: 479

View: 8361

DOWNLOAD NOW »

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

Frames for Undergraduates

Author: Deguang Han

Publisher: American Mathematical Soc.

ISBN: 0821842129

Category: Mathematics

Page: 295

View: 2951

DOWNLOAD NOW »

Frames for Undergraduates is an undergraduate-level introduction to the theory of frames in a Hilbert space. This book can serve as a text for a special-topics course in frame theory, but it could also be used to teach a second semester of linear algebra, using frames as an application of the theoretical concepts. It can also provide a complete and helpful resource for students doing undergraduate research projects using frames. The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students.

Matrices

Theory and Applications

Author: Denis Serre

Publisher: Springer Science & Business Media

ISBN: 9781441976833

Category: Mathematics

Page: 289

View: 6547

DOWNLOAD NOW »

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Naive Lie Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387782157

Category: Mathematics

Page: 217

View: 3937

DOWNLOAD NOW »

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Matrices and Transformations

Author: Anthony J. Pettofrezzo

Publisher: Courier Corporation

ISBN: 0486151808

Category: Mathematics

Page: 144

View: 7434

DOWNLOAD NOW »

Elementary, concrete approach: fundamentals of matrix algebra, linear transformation of the plane, application of properties of eigenvalues and eigenvectors to study of conics. Includes proofs of most theorems. Answers to odd-numbered exercises.

Lie Groups, Lie Algebras, and Representations

An Elementary Introduction

Author: Brian Hall

Publisher: Springer

ISBN: 3319134671

Category: Mathematics

Page: 453

View: 4997

DOWNLOAD NOW »

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Lie Groups, Physics, and Geometry

An Introduction for Physicists, Engineers and Chemists

Author: Robert Gilmore

Publisher: Cambridge University Press

ISBN: 113946907X

Category: Science

Page: N.A

View: 9578

DOWNLOAD NOW »

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Lie Groups

An Introduction Through Linear Groups

Author: Wulf Rossmann

Publisher: Oxford University Press on Demand

ISBN: 9780199202515

Category: Mathematics

Page: 265

View: 778

DOWNLOAD NOW »

Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of thetheory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.

Structure and Geometry of Lie Groups

Author: Joachim Hilgert,Karl-Hermann Neeb

Publisher: Springer Science & Business Media

ISBN: 9780387847948

Category: Mathematics

Page: 746

View: 6584

DOWNLOAD NOW »

This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.

Symmetry

An Introduction to Group Theory and Its Applications

Author: R. McWeeny

Publisher: Elsevier

ISBN: 1483226247

Category: Mathematics

Page: 262

View: 5695

DOWNLOAD NOW »

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Lie Groups, Lie Algebras, and Some of Their Applications

Author: Robert Gilmore

Publisher: Courier Corporation

ISBN: 0486131564

Category: Mathematics

Page: 608

View: 7784

DOWNLOAD NOW »

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.