Introductory Mathematics: Algebra and Analysis

Author: Geoffrey C. Smith

Publisher: Springer Science & Business Media

ISBN: 1447106199

Category: Mathematics

Page: 215

View: 3639

DOWNLOAD NOW »

This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.

Mathematical Analysis

An Introduction

Author: Andrew Browder

Publisher: Springer Science & Business Media

ISBN: 1461207150

Category: Mathematics

Page: 335

View: 4289

DOWNLOAD NOW »

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Real Analysis

Author: John M. Howie

Publisher: Springer Science & Business Media

ISBN: 1447103416

Category: Mathematics

Page: 276

View: 7798

DOWNLOAD NOW »

Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, the book covers all the key topics with fully worked examples and exercises with solutions. All the concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject. This book offers a fresh approach to a core subject and manages to provide a gentle and clear introduction without sacrificing rigour or accuracy.

Introduction to Mathematical Analysis

Author: Igor Kriz,Ales Pultr

Publisher: Springer Science & Business Media

ISBN: 3034806361

Category: Mathematics

Page: 510

View: 1148

DOWNLOAD NOW »

The book begins at the level of an undergraduate student assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, Lebesgue integral, vector calculus and differential equations. After having built on a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis, as understood by a mathematician today.​

Numbers and Functions

Steps into Analysis

Author: R. P. Burn

Publisher: Cambridge University Press

ISBN: 1316033783

Category: Mathematics

Page: N.A

View: 1223

DOWNLOAD NOW »

The transition from studying calculus in schools to studying mathematical analysis at university is notoriously difficult. In this third edition of Numbers and Functions, Professor Burn invites the student reader to tackle each of the key concepts in turn, progressing from experience through a structured sequence of more than 800 problems to concepts, definitions and proofs of classical real analysis. The sequence of problems, of which most are supplied with brief answers, draws students into constructing definitions and theorems for themselves. This natural development is informed and complemented by historical insight. Carefully corrected and updated throughout, this new edition also includes extra questions on integration and an introduction to convergence. The novel approach to rigorous analysis offered here is designed to enable students to grow in confidence and skill and thus overcome the traditional difficulties.

Applied Linear Algebra and Matrix Analysis

Author: Thomas S. Shores

Publisher: Springer

ISBN: 3319747487

Category: Mathematics

Page: 479

View: 5360

DOWNLOAD NOW »

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.

Elements of Logic via Numbers and Sets

Visualization of Mathematical Objects with Mathematica. CD-ROM

Author: D.L. Johnson

Publisher: Springer Science & Business Media

ISBN: 9783540761235

Category: Mathematics

Page: 174

View: 5468

DOWNLOAD NOW »

This is an elementary text, aimed at first-year undergraduates, which has been designed to bridge the gap between school and university mathematics and to emphasise the importance of proofs - both how to follow a proof and how to construct a proof. The book lays the foundation for most of the key subjects studied in an undergraduate degree program, and provides numerous exercises and a bibliography with suggestions for further and background reading.

Introduction to Real Analysis

Author: Michael J. Schramm

Publisher: Courier Corporation

ISBN: 0486131920

Category: Mathematics

Page: 384

View: 9051

DOWNLOAD NOW »

This text forms a bridge between courses in calculus and real analysis. Suitable for advanced undergraduates and graduate students, it focuses on the construction of mathematical proofs. 1996 edition.

Fundamentals of Mathematical Analysis

Author: Paul J. Sally, Jr.

Publisher: American Mathematical Soc.

ISBN: 0821891413

Category: Mathematics

Page: 362

View: 3320

DOWNLOAD NOW »

This is a textbook for a course in Honors Analysis (for freshman/sophomore undergraduates) or Real Analysis (for junior/senior undergraduates) or Analysis-I (beginning graduates). It is intended for students who completed a course in ``AP Calculus'', possibly followed by a routine course in multivariable calculus and a computational course in linear algebra. There are three features that distinguish this book from many other books of a similar nature and which are important for the use of this book as a text. The first, and most important, feature is the collection of exercises. These are spread throughout the chapters and should be regarded as an essential component of the student's learning. Some of these exercises comprise a routine follow-up to the material, while others challenge the student's understanding more deeply. The second feature is the set of independent projects presented at the end of each chapter. These projects supplement the content studied in their respective chapters. They can be used to expand the student's knowledge and understanding or as an opportunity to conduct a seminar in Inquiry Based Learning in which the students present the material to their class. The third really important feature is a series of challenge problems that increase in impossibility as the chapters progress.

Introductory Real Analysis

Author: A. N. Kolmogorov,S. V. Fomin

Publisher: Courier Corporation

ISBN: 0486134741

Category: Mathematics

Page: 416

View: 1224

DOWNLOAD NOW »

Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.

Introduction to Modern Algebra and Matrix Theory

Second Edition

Author: O. Schreier,E. Sperner

Publisher: Courier Corporation

ISBN: 0486278654

Category: Mathematics

Page: 400

View: 5793

DOWNLOAD NOW »

This unique text provides students with a basic course in both calculus and analytic geometry — no competitive editions cover both topics in a single volume. Its prerequisites are minimal, and the order of its presentation promotes an intuitive approach to calculus. Algebraic concepts receive an unusually strong emphasis. Numerous exercises appear throughout the text. 1951 edition.

Groups, Rings and Fields

Author: David A.R. Wallace

Publisher: Springer Science & Business Media

ISBN: 1447104250

Category: Mathematics

Page: 248

View: 9708

DOWNLOAD NOW »

This is a basic introduction to modern algebra, providing a solid understanding of the axiomatic treatment of groups and then rings, aiming to promote a feeling for the evolutionary and historical development of the subject. It includes problems and fully worked solutions, enabling readers to master the subject rather than simply observing it.

An Introduction to Analysis

Author: Robert C. Gunning

Publisher: Princeton University Press

ISBN: 1400889413

Category: Mathematics

Page: 384

View: 1288

DOWNLOAD NOW »

An essential undergraduate textbook on algebra, topology, and calculus An Introduction to Analysis is an essential primer on basic results in algebra, topology, and calculus for undergraduate students considering advanced degrees in mathematics. Ideal for use in a one-year course, this unique textbook also introduces students to rigorous proofs and formal mathematical writing--skills they need to excel. With a range of problems throughout, An Introduction to Analysis treats n-dimensional calculus from the beginning—differentiation, the Riemann integral, series, and differential forms and Stokes's theorem—enabling students who are serious about mathematics to progress quickly to more challenging topics. The book discusses basic material on point set topology, such as normed and metric spaces, topological spaces, compact sets, and the Baire category theorem. It covers linear algebra as well, including vector spaces, linear mappings, Jordan normal form, bilinear mappings, and normal mappings. Proven in the classroom, An Introduction to Analysis is the first textbook to bring these topics together in one easy-to-use and comprehensive volume. Provides a rigorous introduction to calculus in one and several variables Introduces students to basic topology Covers topics in linear algebra, including matrices, determinants, Jordan normal form, and bilinear and normal mappings Discusses differential forms and Stokes's theorem in n dimensions Also covers the Riemann integral, integrability, improper integrals, and series expansions

Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences

Author: Ernest F. Haeussler,Richard S. Paul,Richard J. Wood

Publisher: Prentice Hall

ISBN: 9780321643728

Category: Mathematics

Page: 811

View: 9953

DOWNLOAD NOW »

Haeussler, Paul, and Wood establish a strong algebraic foundation that sets this text apart from other applied mathematics texts, paving the way for readers to solve real-world problems that use calculus. Emphasis on developing algebraic skills is extended to the exercises—including both drill problems and applications. The authors work through examples and explanations with a blend of rigor and accessibility. In addition, they have refined the flow, transitions, organization, and portioning of the content over many editions to optimize learning for readers. The table of contents covers a wide range of topics efficiently, enabling readers to gain a diverse understanding.

An Introduction to Mathematical Analysis for Economic Theory and Econometrics

Author: Dean Corbae,Maxwell B. Stinchcombe,Juraj Zeman

Publisher: Princeton University Press

ISBN: 1400833086

Category: Business & Economics

Page: 688

View: 6506

DOWNLOAD NOW »

Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory

Linear Functional Analysis

Author: Bryan Rynne,M.A. Youngson

Publisher: Springer Science & Business Media

ISBN: 1447136551

Category: Mathematics

Page: 273

View: 973

DOWNLOAD NOW »

This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Introductory Mathematics: Applications and Methods

Author: Gordon S. Marshall

Publisher: Springer Science & Business Media

ISBN: 1447134125

Category: Mathematics

Page: 226

View: 2155

DOWNLOAD NOW »

This book is aimed at undergraduate students embarking on the first year of a modular mathematics degree course. It is a self-contained textbook making it ideally suited to distance learning and a useful reference source for courses with the traditional lecture/tutorial structure. The theoretical content is firmly based but the principal focus is on techniques and applications. The important aims and objectives are presented clearly and then reinforced using complete worked solutions within the text. There is a natural increase in difficulty and understanding as each chapter progresses, always building upon the basic elements. It is assumed that the reader has studied elementary calculus at Advanced level and is at least familiar with the concept of function and has been exposed to basic differentiation and integration techniques. Although these are covered in the book they are presented as a refresher course to jog the student's memory rather than to introduce the topic for the first time. The early chapters cover the topics of matrix algebra, vector algebra and com plex numbers in sufficient depth for the student to feel comfortable -when they reappear later in the book. Subsequent chapters then build upon the student's 'A' level knowledge in the area of real variable calculus, including partial differentiation and mUltiple inte grals. The concluding chapter on differential equations motivates the student's learning by consideration of applications taken from both physical and eco nomic contexts.

An Introduction to Mathematical Thinking

Algebra and Number Systems

Author: William J. Gilbert,Scott A. Vanstone

Publisher: Prentice Hall

ISBN: 9780131848689

Category: Mathematics

Page: 300

View: 8068

DOWNLOAD NOW »

Besides giving readers the techniques for solving polynomial equations and congruences, An Introduction to Mathematical Thinking provides preparation for understanding more advanced topics in Linear and Modern Algebra, as well as Calculus. This book introduces proofs and mathematical thinking while teaching basic algebraic skills involving number systems, including the integers and complex numbers. Ample questions at the end of each chapter provide opportunities for learning and practice; the Exercises are routine applications of the material in the chapter, while the Problems require more ingenuity, ranging from easy to nearly impossible. Topics covered in this comprehensive introduction range from logic and proofs, integers and diophantine equations, congruences, induction and binomial theorem, rational and real numbers, and functions and bijections to cryptography, complex numbers, and polynomial equations. With its comprehensive appendices, this book is an excellent desk reference for mathematicians and those involved in computer science.

The Real Numbers

An Introduction to Set Theory and Analysis

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 331901577X

Category: Mathematics

Page: 244

View: 8406

DOWNLOAD NOW »

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.

Some Modern Mathematics for Physicists and Other Outsiders

An Introduction to Algebra, Topology, and Functional Analysis

Author: Paul Roman

Publisher: Elsevier

ISBN: 1483187373

Category: Mathematics

Page: 426

View: 5964

DOWNLOAD NOW »

Some Modern Mathematics for Physicists and Other Outsiders: An Introduction to Algebra, Topology, and Functional Analysis, Volume 1 focuses on the operations, principles, methodologies, and approaches employed in algebra, topology, and functional analysis. The publication first offers information on sets, maps, and algebraic composition laws and systems. Discussions focus on morphisms of algebraic systems, sequences and families, cardinal numbers, ordered sets and maps, equivalence relations and maps, composite functions and inverses, operations with sets, and relations in sets. The text then ponders on special algebraic systems, topological spaces, and topological spaces with special properties. Topics include complete metric spaces, compact spaces, separable and connected spaces, homeomorphism and isometry, convergence, continuity, general structure of topological spaces, rings and fields, linear spaces, linear algebras, and nonassociative algebras. The book elaborates on the theory of integration and measure spaces, including measurable spaces, general properties of the integral, and measureable functions. The publication is a valuable reference for theoretical physicists, research engineers, and scientists who are concerned with structural problems.