Introduction to Time Series Analysis and Forecasting

Author: Douglas C. Montgomery,Cheryl L. Jennings,Murat Kulahci

Publisher: John Wiley & Sons

ISBN: 1118745159

Category: Mathematics

Page: 672

View: 5690

DOWNLOAD NOW »

Praise for the First Edition "…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.

Time Series Analysis and Forecasting by Example

Author: Søren Bisgaard,Murat Kulahci

Publisher: John Wiley & Sons

ISBN: 9781118056950

Category: Mathematics

Page: 400

View: 6526

DOWNLOAD NOW »

An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS®, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.

Zeitreihenmodelle

Author: Andrew C. Harvey

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486786741

Category: Business & Economics

Page: 396

View: 8782

DOWNLOAD NOW »

Gegenstand des Werkes sind Analyse und Modellierung von Zeitreihen. Es wendet sich an Studierende und Praktiker aller Disziplinen, in denen Zeitreihenbeobachtungen wichtig sind.

Introduction to Time Series Analysis and Forecasting, Solutions Manual

Author: Douglas C. Montgomery,Cheryl L. Jennings,Murat Kulahci

Publisher: Wiley

ISBN: 9780470435748

Category: Mathematics

Page: 88

View: 6010

DOWNLOAD NOW »

An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts. Seven easy-to-follow chapters provide intuitive explanations and in-depth coverage of key forecasting topics, including: Regression-based methods, heuristic smoothing methods, and general time series models Basic statistical tools used in analyzing time series data Metrics for evaluating forecast errors and methods for evaluating and tracking forecasting performance over time Cross-section and time series regression data, least squares and maximum likelihood model fitting, model adequacy checking, prediction intervals, and weighted and generalized least squares Exponential smoothing techniques for time series with polynomial components and seasonal data Forecasting and prediction interval construction with a discussion on transfer function models as well as intervention modeling and analysis Multivariate time series problems, ARCH and GARCH models, and combinations of forecasts The ARIMA model approach with a discussion on how to identify and fit these models for non-seasonal and seasonal time series The intricate role of computer software in successful time series analysis is acknowledged with the use of Minitab, JMP, and SAS software applications, which illustrate how the methods are imple-mented in practice. An extensive FTP site is available for readers to obtain data sets, Microsoft Office PowerPoint slides, and selected answers to problems in the book. Requiring only a basic working knowledge of statistics and complete with exercises at the end of each chapter as well as examples from a wide array of fields, Introduction to Time Series Analysis and Forecasting is an ideal text for forecasting and time series courses at the advanced undergraduate and beginning graduate levels. The book also serves as an indispensable reference for practitioners in business, economics, engineering, statistics, mathematics, and the social, environmental, and life sciences.

Introduction to Time Series Analysis and Forecasting Solutions Set

Author: Douglas C. Montgomery,Cheryl L. Jennings,Murat Kulahci

Publisher: Wiley

ISBN: 9780470501474

Category: Mathematics

Page: 547

View: 6302

DOWNLOAD NOW »

This set contains Introduction to Time Series Analysis and Forecasting text ISBN 978-0-471-65397-4 and Introduction to Time Series Analysis and Forecasting, Solutions Manual ISBN 978-0-470-43574-8.

Multivariate Time Series Analysis

With R and Financial Applications

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 1118617754

Category: Mathematics

Page: 520

View: 9878

DOWNLOAD NOW »

An accessible guide to the multivariate time series toolsused in numerous real-world applications Multivariate Time Series Analysis: With R and FinancialApplications is the much anticipated sequel coming from one ofthe most influential and prominent experts on the topic of timeseries. Through a fundamental balance of theory and methodology,the book supplies readers with a comprehensible approach tofinancial econometric models and their applications to real-worldempirical research. Differing from the traditional approach to multivariate timeseries, the book focuses on reader comprehension by emphasizingstructural specification, which results in simplified parsimoniousVAR MA modeling. Multivariate Time Series Analysis: With R andFinancial Applications utilizes the freely available Rsoftware package to explore complex data and illustrate relatedcomputation and analyses. Featuring the techniques and methodologyof multivariate linear time series, stationary VAR models, VAR MAtime series and models, unitroot process, factor models, andfactor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce thepresented content • User-friendly R subroutines and research presentedthroughout to demonstrate modern applications • Numerous datasets and subroutines to provide readerswith a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbookfor graduate-level courses on time series and quantitative financeand upper-undergraduate level statistics courses in time series.The book is also an indispensable reference for researchers andpractitioners in business, finance, and econometrics.

An Introduction to Analysis of Financial Data with R

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 1119013461

Category: Business & Economics

Page: 416

View: 9045

DOWNLOAD NOW »

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.

Introduction to Linear Regression Analysis

Author: Douglas C. Montgomery,Elizabeth A. Peck,G. Geoffrey Vining

Publisher: John Wiley & Sons

ISBN: 1119180171

Category: Mathematics

Page: 672

View: 2328

DOWNLOAD NOW »

Praise for the Fourth Edition "As with previous editions, the authors have produced a leadingtextbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to thefundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Editioncontinues to present both the conventional and less common uses oflinear regression in today’s cutting-edge scientificresearch. The authors blend both theory and application to equipreaders with an understanding of the basic principles needed toapply regression model-building techniques in various fields ofstudy, including engineering, management, and the healthsciences. Following a general introduction to regression modeling,including typical applications, a host of technical tools areoutlined such as basic inference procedures, introductory aspectsof model adequacy checking, and polynomial regression models andtheir variations. The book then discusses how transformations andweighted least squares can be used to resolve problems of modelinadequacy and also how to deal with influential observations. TheFifth Edition features numerous newly added topics,including: A chapter on regression analysis of time series data thatpresents the Durbin-Watson test and other techniques for detectingautocorrelation as well as parameter estimation in time seriesregression models Regression models with random effects in addition to adiscussion on subsampling and the importance of the mixedmodel Tests on individual regression coefficients and subsets ofcoefficients Examples of current uses of simple linear regression models andthe use of multiple regression models for understanding patientsatisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors haveincorporated JMP and the freely available R software to illustratethe discussed techniques and procedures in this new edition.Numerous exercises have been added throughout, allowing readers totest their understanding of the material. Introduction to Linear Regression Analysis, Fifth Editionis an excellent book for statistics and engineering courses onregression at the upper-undergraduate and graduate levels. The bookalso serves as a valuable, robust resource for professionals in thefields of engineering, life and biological sciences, and the socialsciences.

Time Series

Applications to Finance

Author: Ngai Hang Chan

Publisher: John Wiley & Sons

ISBN: 0471461644

Category: Mathematics

Page: 224

View: 4209

DOWNLOAD NOW »

Elements of Financial Time Series fills a gap in the market in thearea of financial time series analysis by giving both conceptualand practical illustrations. Examples and discussions in the laterchapters of the book make recent developments in time series moreaccessible. Examples from finance are maximized as much as possiblethroughout the book. * Full set of exercises is displayed at the end of eachchapter. * First seven chapters cover standard topics in time series at ahigh-intensity level. * Recent and timely developments in nonstandard time seriestechniques are illustrated with real finance examples indetail. * Examples are systemically illustrated with S-plus with codes anddata available on an associated Web site.

Nonparametric Statistics with Applications to Science and Engineering

Author: Paul H. Kvam,Brani Vidakovic

Publisher: John Wiley & Sons

ISBN: 9780470168691

Category: Mathematics

Page: 448

View: 5746

DOWNLOAD NOW »

A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 1427

DOWNLOAD NOW »

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Time Series Analysis

Author: Wilfredo Palma

Publisher: John Wiley & Sons

ISBN: 1118634322

Category: Mathematics

Page: 616

View: 7589

DOWNLOAD NOW »

A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univariate time series by illustrating a number of well-known models such as ARMA and ARIMA. Providing contemporary coverage, the book features several useful and newly-developed techniques such as weak and strong dependence, Bayesian methods, non-Gaussian data, local stationarity, missing values and outliers, and threshold models. Time Series Analysis includes practical applications of time series methods throughout, as well as: Real-world examples and exercise sets that allow readers to practice the presented methods and techniques Numerous detailed analyses of computational aspects related to the implementation of methodologies including algorithm efficiency, arithmetic complexity, and process time End-of-chapter proposed problems and bibliographical notes to deepen readers’ knowledge of the presented material Appendices that contain details on fundamental concepts and select solutions of the problems implemented throughout A companion website with additional data files and computer codes Time Series Analysis is an excellent textbook for undergraduate and beginning graduate-level courses in time series as well as a supplement for students in advanced statistics, mathematics, economics, finance, engineering, and physics. The book is also a useful reference for researchers and practitioners in time series analysis, econometrics, and finance. Wilfredo Palma, PhD, is Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. Dr. Palma has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics. He is the author of Long-Memory Time Series: Theory and Methods, also published by Wiley.

Analysis of Financial Time Series

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 9781118017098

Category: Mathematics

Page: 720

View: 3181

DOWNLOAD NOW »

This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.

Bayesian Statistical Modelling

Author: Peter Congdon

Publisher: John Wiley & Sons

ISBN: 0470035935

Category: Mathematics

Page: 596

View: 5177

DOWNLOAD NOW »

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

The EM Algorithm and Extensions

Author: Geoffrey McLachlan,Thriyambakam Krishnan

Publisher: John Wiley & Sons

ISBN: 0470191600

Category: Mathematics

Page: 384

View: 500

DOWNLOAD NOW »

The only single-source——now completely updated and revised——to offer a unified treatment of the theory, methodology, and applications of the EM algorithm Complete with updates that capture developments from the past decade, The EM Algorithm and Extensions, Second Edition successfully provides a basic understanding of the EM algorithm by describing its inception, implementation, and applicability in numerous statistical contexts. In conjunction with the fundamentals of the topic, the authors discuss convergence issues and computation of standard errors, and, in addition, unveil many parallels and connections between the EM algorithm and Markov chain Monte Carlo algorithms. Thorough discussions on the complexities and drawbacks that arise from the basic EM algorithm, such as slow convergence and lack of an in-built procedure to compute the covariance matrix of parameter estimates, are also presented. While the general philosophy of the First Edition has been maintained, this timely new edition has been updated, revised, and expanded to include: New chapters on Monte Carlo versions of the EM algorithm and generalizations of the EM algorithm New results on convergence, including convergence of the EM algorithm in constrained parameter spaces Expanded discussion of standard error computation methods, such as methods for categorical data and methods based on numerical differentiation Coverage of the interval EM, which locates all stationary points in a designated region of the parameter space Exploration of the EM algorithm's relationship with the Gibbs sampler and other Markov chain Monte Carlo methods Plentiful pedagogical elements—chapter introductions, lists of examples, author and subject indices, computer-drawn graphics, and a related Web site The EM Algorithm and Extensions, Second Edition serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practitioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm.

Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment

Author: Lutz Edler,Christos Kitsos

Publisher: John Wiley & Sons

ISBN: 0470857668

Category: Mathematics

Page: 502

View: 4365

DOWNLOAD NOW »

Human health risk assessment involves the measuring of risk of exposure to disease, with a view to improving disease prevention. Mathematical, biological, statistical, and computational methods play a key role in exposure assessment, hazard assessment and identification, and dose-response modelling. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment is a comprehensive text that accounts for the wealth of new biological data as well as new biological, toxicological, and medical approaches adopted in risk assessment. It provides an authoritative compendium of state-of-the-art methods proposed and used, featuring contributions from eminent authors with varied experience from academia, government, and industry. Provides a comprehensive summary of currently available quantitative methods for risk assessment of both cancer and non-cancer problems. Describes the applications and the limitations of current mathematical modelling and statistical analysis methods (classical and Bayesian). Includes an extensive introduction and discussion to each chapter. Features detailed studies of risk assessments using biologically-based modelling approaches. Discusses the varying computational aspects of the methods proposed. Provides a global perspective on human health risk assessment by featuring case studies from a wide range of countries. Features an extensive bibliography with links to relevant background information within each chapter. Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment will appeal to researchers and practitioners in public health & epidemiology, and postgraduate students alike. It will also be of interest to professionals working in risk assessment agencies.

The Theory of Measures and Integration

Author: Eric M. Vestrup

Publisher: John Wiley & Sons

ISBN: 0470317957

Category: Mathematics

Page: 624

View: 4768

DOWNLOAD NOW »

An accessible, clearly organized survey of the basic topics of measure theory for students and researchers in mathematics, statistics, and physics In order to fully understand and appreciate advanced probability, analysis, and advanced mathematical statistics, a rudimentary knowledge of measure theory and like subjects must first be obtained. The Theory of Measures and Integration illuminates the fundamental ideas of the subject-fascinating in their own right-for both students and researchers, providing a useful theoretical background as well as a solid foundation for further inquiry. Eric Vestrup's patient and measured text presents the major results of classical measure and integration theory in a clear and rigorous fashion. Besides offering the mainstream fare, the author also offers detailed discussions of extensions, the structure of Borel and Lebesgue sets, set-theoretic considerations, the Riesz representation theorem, and the Hardy-Littlewood theorem, among other topics, employing a clear presentation style that is both evenly paced and user-friendly. Chapters include: * Measurable Functions * The Lp Spaces * The Radon-Nikodym Theorem * Products of Two Measure Spaces * Arbitrary Products of Measure Spaces Sections conclude with exercises that range in difficulty between easy "finger exercises"and substantial and independent points of interest. These more difficult exercises are accompanied by detailed hints and outlines. They demonstrate optional side paths in the subject as well as alternative ways of presenting the mainstream topics. In writing his proofs and notation, Vestrup targets the person who wants all of the details shown up front. Ideal for graduate students in mathematics, statistics, and physics, as well as strong undergraduates in these disciplines and practicing researchers, The Theory of Measures and Integration proves both an able primary text for a real analysis sequence with a focus on measure theory and a helpful background text for advanced courses in probability and statistics.

Time Series Analysis

Forecasting and Control

Author: George E. P. Box,Gwilym M. Jenkins,Gregory C. Reinsel

Publisher: Wiley

ISBN: 9780470272848

Category: Mathematics

Page: 784

View: 3646

DOWNLOAD NOW »

A modernized new edition of one of the most trusted books on time series analysis. Since publication of the first edition in 1970, Time Series Analysis has served as one of the most influential and prominent works on the subject. This new edition maintains its balanced presentation of the tools for modeling and analyzing time series and also introduces the latest developments that have occurred n the field over the past decade through applications from areas such as business, finance, and engineering. The Fourth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series as well as their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, modern topics are introduced through the book's new features, which include: A new chapter on multivariate time series analysis, including a discussion of the challenge that arise with their modeling and an outline of the necessary analytical tools New coverage of forecasting in the design of feedback and feedforward control schemes A new chapter on nonlinear and long memory models, which explores additional models for application such as heteroscedastic time series, nonlinear time series models, and models for long memory processes Coverage of structural component models for the modeling, forecasting, and seasonal adjustment of time series A review of the maximum likelihood estimation for ARMA models with missing values Numerous illustrations and detailed appendices supplement the book,while extensive references and discussion questions at the end of each chapter facilitate an in-depth understanding of both time-tested and modern concepts. With its focus on practical, rather than heavily mathematical, techniques, Time Series Analysis, Fourth Edition is the upper-undergraduate and graduate levels. this book is also an invaluable reference for applied statisticians, engineers, and financial analysts.

Exploratory Data Mining and Data Cleaning

Author: Tamraparni Dasu,Theodore Johnson

Publisher: John Wiley & Sons

ISBN: 0471458643

Category: Mathematics

Page: 203

View: 9413

DOWNLOAD NOW »

Written for practitioners of data mining, data cleaning anddatabase management. Presents a technical treatment of data quality includingprocess, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through aniterative data exploration loop and incorporation of domainknowledge. Addresses methods of detecting, quantifying and correcting dataquality issues that can have a significant impact on findings anddecisions, using commercially available tools as well as newalgorithmic approaches. Uses case studies to illustrate applications in real lifescenarios. Highlights new approaches and methodologies, such as theDataSphere space partitioning and summary based analysistechniques. Exploratory Data Mining and Data Cleaning will serve as animportant reference for serious data analysts who need to analyzelarge amounts of unfamiliar data, managers of operations databases,and students in undergraduate or graduate level courses dealingwith large scale data analys is and data mining.

Introduction to Time-series Modeling and Forecasting in Business and Economics

Author: Patricia E. Gaynor,Rickey C. Kirkpatrick

Publisher: McGraw-Hill College

ISBN: 9780070349131

Category: Business & Economics

Page: 625

View: 8855

DOWNLOAD NOW »

This text is designed for forecasting courses in economics, management science and decision science departments, and emphasizing understanding and application rather than the theoretical and computational aspects of the statistical techniques used. Chapter 2 on describing and transforming data and chapter 9 on single equation econometric modelling offer in-depth discussions of topics fundamental to time-series analysis that most other texts cover in a cursory fashion.