Groups and Symmetry

Author: Mark A. Armstrong

Publisher: Springer Science & Business Media

ISBN: 1475740344

Category: Mathematics

Page: 187

View: 6613


This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.

Symmetry (Group Theory) and Mathematical Treatment in Chemistry

Author: Takashiro Akitsu

Publisher: BoD – Books on Demand

ISBN: 1789233143

Category: Science

Page: 186

View: 8912


The aim of this book Symmetry (Group Theory) and Mathematical Treatment in Chemistry is to be a graduate school-level text about introducing recent research examples associated with symmetry (group theory) and mathematical treatment in inorganic or organic chemistry, physical chemistry or chemical physics, and theoretical chemistry. Chapters contained can be classified into mini-review, tutorial review, or original research chapters of mathematical treatment in chemistry with brief explanation of related mathematical theories. Keywords are symmetry, group theory, crystallography, solid state, topology, molecular structure, electronic state, quantum chemistry, theoretical chemistry, and DFT calculations.

Groups and Symmetry

Author: Mark Anthony Armstrong

Publisher: N.A

ISBN: 9783540966753

Category: Mathematics

Page: 186

View: 9600


Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Throughout the book, emphasis is placed on concrete examples, often geometrical in nature, so that finite rotation groups and the 17 wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using groups actions on trees. There are more than 300 exercises and approximately 60 illustrations to help develop the student's intuition.

Arithmetic Groups and Their Generalizations

What, Why, and How

Author: Lizhen Ji

Publisher: American Mathematical Soc.

ISBN: 0821848666

Category: Mathematics

Page: 259

View: 8935


In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n,\mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA. Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come. (AMSIP/43.)

Groups and Symmetries

From Finite Groups to Lie Groups

Author: Yvette Kosmann-Schwarzbach

Publisher: Springer Science & Business Media

ISBN: 0387788662

Category: Mathematics

Page: 196

View: 8118


- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study

Endliche Gruppen

Eine Einführung in die Theorie der endlichen Gruppen

Author: H. Kurzweil

Publisher: Springer-Verlag

ISBN: 3642953131

Category: Mathematics

Page: 190

View: 9927


Lie Groups

A Problem Oriented Introduction Via Matrix Groups

Author: Harriet Pollatsek

Publisher: MAA

ISBN: 9780883857595

Category: Mathematics

Page: 177

View: 9918


The work of the Norwegian mathematician Sophus Lie extends ideas of symmetry and leads to many applications in mathematics and physics. Ordinarily, the study of the "objects" in Lie's theory (Lie groups and Lie algebras) requires extensive mathematical prerequisites beyond the reach of the typical undergraduate. By restricting to the special case of matrix Lie groups and relying on ideas from multivariable calculus and linear algebra, this lovely and important material becomes accessible even to college sophomores. Working with Lie's ideas fosters an appreciation of the unity of mathematics and the sometimes surprising ways in which mathematics provides a language to describe and understand the physical world.Lie Groups is an active learning text that can be used by students with a range of backgrounds and interests. The material is developed through 200 carefully chosen problems. This is the only book in the undergraduate curriculum to bring this material to students so early in their mathematical careers.

Tutorium Quantenfeldtheorie

Was Sie schon immer über QFT wissen wollten, aber bisher nicht zu fragen wagten

Author: Lisa Edelhäuser,Alexander Knochel

Publisher: Springer-Verlag

ISBN: 3642376762

Category: Science

Page: 539

View: 7953


Dieses Buch richtet sich an alle, die sich schon immer gefragt haben, wie die kanonische Quantisierung, die LSZ-Reduktionsformel, Pfadintegrale, Feynman-Graphen und die Renormierung miteinander zusammenhängen. Als locker geschriebene Begleitlektüre zu Vorlesungen über Quantenfeldtheorie oder zum Selbststudium geeignet, gibt sich das Buch gesprächig und liefert Rechentricks und Erklärungen, die für Einsteiger sehr hilfreich sind. Im ersten Teil werden anhand von Skalarfeldern grundlegende Konzepte von der klassischen Feldtheorie bis zur Renormierung eingeführt. Der zweite Teil verallgemeinert diese für Felder mit Spin und legt mit der Einführung des Eichprinzips die Grundlagen für den dritten Teil. Hier werden „Anwendungen auf die reale Welt“ behandelt: Die Quantenelektrodynamik und ihre Renormierung, sowie das Standardmodell der Teilchenphysik und der Higgs-Mechanismus. Durch ausführlich vorgerechnete und in den Text eingebundene Aufgaben eignet sich das Tutorium sowohl zum schnellen Nachschlagen von „Rezepten“, als auch als Lektüre und Arbeitsbuch für Studierende, die eine tiefer gehende Diskussion der Quantenfeldtheorie suchen. Kurze Kapitel zu Grundlagenthemen wie Lie-Algebren und -Gruppen, Relativitätstheorie, Funktionentheorie und Funktionalableitungen ergänzen das Buch. Aus dem Inhalt: Kanonische Quantisierung Green’sche Funktionen, Pfadintegrale und erzeugende Funktionale Feynman-Graphen und Wick-Theorem Regularisierung und Renormierung Eichsymmetrien, Ward-Identitäten und QED Standardmodell der Teilchenphysik und Higgs-Mechanismus Lisa Edelhäuser hat in Würzburg Physik studiert und dort 2012 in theoretischer Elementarteilchenphysik promoviert. Sie war danach als wissenschaftliche Mitarbeiterin an der RWTH Aachen tätig. bAlexander Knochel /bhat in Würzburg und New York Physik studiert und 2009 in Würzburg in theoretischer Elementarteilchenphysik promoviert. Er war als wissenschaftlicher Mitarbeiter an den Universitäten Freiburg, Heidelberg und der RWTH Aachen tätig und hat dabei langjährige Erfahrung bei der Betreuung von Tutorien zur QFT I und II gesammelt.

Dunkle Materie und Dinosaurier

Die erstaunlichen Zusammenhänge des Universums

Author: Lisa Randall

Publisher: S. Fischer Verlag

ISBN: 3104030251

Category: Science

Page: 464

View: 1808


Die Natur der Dunklen Materie gehört zu den spannendsten Fragen der Kosmologie. Die Bestseller-Autorin und Harvard-Professorin Lisa Randall nimmt uns in ihrem neuen Buch ›Dunkle Materie und Dinosaurier. Die erstaunlichen Zusammenhänge des Universums‹ mit auf eine Reise in die Welt der Physik und hilft uns zu verstehen, welche Rolle die Dunkle Materie bei der Entstehung unserer Galaxie, unseres Sonnensystems und sogar des Lebens selbst gespielt hat. Eindrucksvoll zeigt sie, wie die Wissenschaft neue Konzepte und Erklärungen für dieses weithin unbekannte Phänomen entwickelt und verwebt geschickt die Geschichte des Kosmos mit unserer eigenen. Ein Buch, das ein völlig neues Licht auf die tiefen Verbindungen wirft, die unsere Welt so maßgeblich mitgeprägt haben, und uns die außerordentliche Schönheit zeigt, die selbst den alltäglichsten Dingen innewohnt.

Linear algebra gems

assets for undergraduate mathematics

Author: David H. Carlson

Publisher: Mathematical Assn of Amer

ISBN: 9780883851708

Category: Mathematics

Page: 328

View: 3377


Adventures in Group Theory

Rubik's Cube, Merlin's Machine, and Other Mathematical Toys

Author: David Joyner

Publisher: JHU Press

ISBN: 9780801869471

Category: Mathematics

Page: 262

View: 1399


"A tour through the algebra of several 'permutation puzzles'... If you like puzzles, this is a somewhat fun book. If you like algebra, this is a fun book. If you like puzzles and algebra, this is a really fun book." -- MAA Online

Naive Lie Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387782157

Category: Mathematics

Page: 217

View: 3485


In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 1416


Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Geometry and Symmetry

Author: Paul B. Yale

Publisher: Courier Corporation

ISBN: 0486169324

Category: Mathematics

Page: 288

View: 571


DIVIntroduction to the geometry of euclidean, affine and projective spaces with special emphasis on the important groups of symmetries of these spaces. Many exercises, extensive bibliography. Advanced undergraduate level. /div

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 3582


Symmetry and Structure

Readable Group Theory for Chemists

Author: Sidney F. A. Kettle

Publisher: John Wiley & Sons

ISBN: 9780470516188

Category: Science

Page: 436

View: 3201


Building on the foundation of the Second Edition, Symmetry and Structure: Readable Group Theory for Chemists, Third Edition turns the complex and potentially difficult subject of group theory into an accessible and readable account of this core area of chemistry. By using a diagrammatical approach and demonstrating the physical principles involved in understanding group theory, the text provides a non-mathematical, yet thorough, treatment of this broad topic. This new edition has been fully revised and updated to include a much more three-dimensional and accurate visualization of many of the key topics. The chapter on octahedral molecules is extended to cover the important topic of the ligand field theory of octahedral transition metal complexes. Problems and summaries are included at the end of each chapter, the book provides detailed answers to frequently asked questions, and numerous diagrams and tables are featured for ease of reading and to enhance student understanding. Symmetry and Structure: Readable Group Theory for Chemists, Third Edition is an essential textbook for all students, researchers and lecturers in chemistry, biochemistry, chemical engineering, physics and material science.

Symmetry, Representations, and Invariants

Author: Roe Goodman,Nolan R. Wallach

Publisher: Springer Science & Business Media

ISBN: 0387798528

Category: Mathematics

Page: 716

View: 4999


Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants: (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.