Arithmetic, Geometry, Cryptography and Coding Theory

Author: Alp Bassa,Alain Couvreur,David Kohel

Publisher: American Mathematical Soc.

ISBN: 1470428105

Category: Algebraic geometry -- Arithmetic problems. Diophantine geometry -- Finite ground fields

Page: 199

View: 2855

DOWNLOAD NOW »

This volume contains the proceedings of the 15th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory (AGCT), held at the Centre International de Rencontres Mathématiques in Marseille, France, from May 18–22, 2015. Since the first meeting almost 30 years ago, the biennial AGCT meetings have been one of the main events bringing together researchers interested in explicit aspects of arithmetic geometry and applications to coding theory and cryptography. This volume contains original research articles reflecting recent developments in the field.

Codes, Cryptology and Curves with Computer Algebra

Author: Ruud Pellikaan,Stanislav Bulygin,Xin-Wen Wu,Relinde Jurrius

Publisher: Cambridge University Press

ISBN: 0521817110

Category: Language Arts & Disciplines

Page: 600

View: 2054

DOWNLOAD NOW »

Graduate-level introduction to error-correcting codes, which are used to protect digital data and applied in public key cryptosystems.

Foundations of Incidence Geometry

Projective and Polar Spaces

Author: Johannes Ueberberg

Publisher: Springer Science & Business Media

ISBN: 3642209726

Category: Mathematics

Page: 248

View: 1795

DOWNLOAD NOW »

Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.

Trees

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 3642618561

Category: Mathematics

Page: 142

View: 9433

DOWNLOAD NOW »

The seminal ideas of this book played a key role in the development of group theory since the 70s. Several generations of mathematicians learned geometric ideas in group theory from this book. In it, the author proves the fundamental theorem for the special cases of free groups and tree products before dealing with the proof of the general case. This new edition is ideal for graduate students and researchers in algebra, geometry and topology.

p-Adic Automorphic Forms on Shimura Varieties

Author: Haruzo Hida

Publisher: Springer Science & Business Media

ISBN: 1468493906

Category: Mathematics

Page: 390

View: 3853

DOWNLOAD NOW »

In the early years of the 1980s, while I was visiting the Institute for Ad vanced Study (lAS) at Princeton as a postdoctoral member, I got a fascinating view, studying congruence modulo a prime among elliptic modular forms, that an automorphic L-function of a given algebraic group G should have a canon ical p-adic counterpart of several variables. I immediately decided to find out the reason behind this phenomenon and to develop the theory of ordinary p-adic automorphic forms, allocating 10 to 15 years from that point, putting off the intended arithmetic study of Shimura varieties via L-functions and Eisenstein series (for which I visited lAS). Although it took more than 15 years, we now know (at least conjecturally) the exact number of variables for a given G, and it has been shown that this is a universal phenomenon valid for holomorphic automorphic forms on Shimura varieties and also for more general (nonholomorphic) cohomological automorphic forms on automorphic manifolds (in a markedly different way). When I was asked to give a series of lectures in the Automorphic Semester in the year 2000 at the Emile Borel Center (Centre Emile Borel) at the Poincare Institute in Paris, I chose to give an exposition of the theory of p-adic (ordinary) families of such automorphic forms p-adic analytically de pending on their weights, and this book is the outgrowth of the lectures given there.

Galois Theory of p-Extensions

Author: Helmut Koch

Publisher: Springer Science & Business Media

ISBN: 3662049678

Category: Mathematics

Page: 191

View: 1067

DOWNLOAD NOW »

Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.

Galois Cohomology

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 3642591418

Category: Mathematics

Page: 212

View: 4238

DOWNLOAD NOW »

This is an updated English translation of Cohomologie Galoisienne, published more than thirty years ago as one of the very first versions of Lecture Notes in Mathematics. It includes a reproduction of an influential paper by R. Steinberg, together with some new material and an expanded bibliography.

Inverse Galois Theory

Author: Gunter Malle,B. Heinrich Matzat

Publisher: Springer

ISBN: 3662554208

Category: Mathematics

Page: 533

View: 4746

DOWNLOAD NOW »

A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.

Geometry of Hypersurfaces

Author: Thomas E Cecil,Patrick J. Ryan

Publisher: Springer

ISBN: 1493932462

Category: Mathematics

Page: 596

View: 7417

DOWNLOAD NOW »

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.

Algebraic Geometry: From algebraic varieties to schemes

Author: Kenji Ueno

Publisher: American Mathematical Soc.

ISBN: 0821808621

Category: Mathematics

Page: 154

View: 3596

DOWNLOAD NOW »

Beginning algebraic geometers are well served by Uneno's inviting introduction to the language of schemes. Grothendieck's schemes and Zariski's emphasis on algebra and rigor are primary sources for this introduction to a rich mathematical subject. Ueno's book is a self-contained text suitable for an introductory course on algebraic geometry.

Finite Geometries

Reprint of the 1968 Edition

Author: Peter Dembowski

Publisher: Springer Science & Business Media

ISBN: 3642620124

Category: Mathematics

Page: 379

View: 7446

DOWNLOAD NOW »

Peter Dembowski was born in Berlin on April 1, 1928. After studying mathematics at the University of Frankfurt of Main, he pursued his graduate studies at Brown Unviersity and the University of Illinois, mainly with R. Baer. Dembowski returned to Frankfurt in 1956. Shortly before his premature death in January 1971, he had been appointed to a chair at the University of Tuebingen. Dembowski taught at the universities of Frankfurt and Tuebingen and - as visiting Professor - in London (Queen Mary College), Rome, and Madison, WI. Dembowski's chief research interest lay in the connections between finite geometries and group theory. His book "Finite Geometries" brought together essentially all that was known at that time about finite geometrical structures, including key results of the author, in a unified and structured perspective. This book became a standard reference as soon as it appeared in 1968. It influenced the expansion of combinatorial geometric research, and left its trace also in neighbouring areas.

Algebraic Patching

Author: Moshe Jarden

Publisher: Springer Science & Business Media

ISBN: 9783642151286

Category: Mathematics

Page: 292

View: 4352

DOWNLOAD NOW »

Assuming only basic algebra and Galois theory, the book develops the method of "algebraic patching" to realize finite groups and, more generally, to solve finite split embedding problems over fields. The method succeeds over rational function fields of one variable over "ample fields". Among others, it leads to the solution of two central results in "Field Arithmetic": (a) The absolute Galois group of a countable Hilbertian pac field is free on countably many generators; (b) The absolute Galois group of a function field of one variable over an algebraically closed field $C$ is free of rank equal to the cardinality of $C$.

Topological Galois Theory

Solvability and Unsolvability of Equations in Finite Terms

Author: Askold Khovanskii

Publisher: Springer

ISBN: 364238871X

Category: Mathematics

Page: 307

View: 9668

DOWNLOAD NOW »

This book provides a detailed and largely self-contained description of various classical and new results on solvability and unsolvability of equations in explicit form. In particular, it offers a complete exposition of the relatively new area of topological Galois theory, initiated by the author. Applications of Galois theory to solvability of algebraic equations by radicals, basics of Picard–Vessiot theory, and Liouville's results on the class of functions representable by quadratures are also discussed. A unique feature of this book is that recent results are presented in the same elementary manner as classical Galois theory, which will make the book useful and interesting to readers with varied backgrounds in mathematics, from undergraduate students to researchers. In this English-language edition, extra material has been added (Appendices A–D), the last two of which were written jointly with Yura Burda.

Modular Forms and Galois Cohomology

Author: Haruzo Hida,Professor Haruzo Hida

Publisher: Cambridge University Press

ISBN: 9780521770361

Category: Mathematics

Page: 343

View: 3296

DOWNLOAD NOW »

Comprehensive account of recent developments in arithmetic theory of modular forms, for graduates and researchers.

Local Fields

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 1475756739

Category: Mathematics

Page: 241

View: 6958

DOWNLOAD NOW »

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation". The chapters are grouped in "parts". There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials", since using the language of algebraic geometry would have led me too far astray.

Index Analysis

Approach Theory at Work

Author: Robert Lowen

Publisher: Springer

ISBN: 1447164857

Category: Mathematics

Page: 466

View: 2496

DOWNLOAD NOW »

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.

Methods of Solving Complex Geometry Problems

Author: Ellina Grigorieva

Publisher: Springer Science & Business Media

ISBN: 331900705X

Category: Mathematics

Page: 234

View: 6931

DOWNLOAD NOW »

This book is a unique collection of challenging geometry problems and detailed solutions that will build students’ confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry’s connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader’s ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson’s line, Heron’s formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.

Function Algebras on Finite Sets

Basic Course on Many-Valued Logic and Clone Theory

Author: Dietlinde Lau

Publisher: Springer Science & Business Media

ISBN: 3540360239

Category: Mathematics

Page: 670

View: 3585

DOWNLOAD NOW »

Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.

Dessins d'Enfants on Riemann Surfaces

Author: Gareth A. Jones,Jürgen Wolfart

Publisher: Springer

ISBN: 3319247115

Category: Mathematics

Page: 259

View: 9427

DOWNLOAD NOW »

This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.