Fundamentals of Electro-Optic Systems Design

Communications, Lidar, and Imaging

Author: Sherman Karp,Larry B. Stotts

Publisher: Cambridge University Press

ISBN: 1107021391

Category: Science

Page: 302

View: 9693

DOWNLOAD NOW »

Presents practical electro-optical applications in the context of the fundamental principles of communication theory, thermodynamics, information theory and propagation theory. Combining systems issues with fundamentals of communications, this is an essential reference for all practising engineers and academic researchers in optical engineering.

Fundamentals of Electro-Optic Systems Design

Communications, Lidar, and Imaging

Author: Sherman Karp,Larry B. Stotts

Publisher: Cambridge University Press

ISBN: 1139619861

Category: Technology & Engineering

Page: N.A

View: 4658

DOWNLOAD NOW »

Using fundamentals of communication theory, thermodynamics, information theory and propagation theory, this book explains the universal principles underlying a diverse range of electro-optical systems. From fiber optics and infra-red imaging to free space communications and laser remote sensing, the authors relate key concepts in science and device engineering to practical systems issues. A broad spectrum of coherent and incoherent imaging and communications systems is considered, accompanied by many real-world examples. The authors also present new insights into LIDAR and free space communications and imaging, providing practical guidance on identifying the fundamental limitations of transmission and imaging through deleterious channels. Accompanied by online examples of processed images and videos, this uniquely tailored guide to the fundamental principles underlying modern electro-optical systems is an essential reference for all practising engineers and academic researchers in optical engineering.

Lasers and Electro-optics

Fundamentals and Engineering

Author: Christopher C. Davis

Publisher: Cambridge University Press

ISBN: 0521860296

Category: Science

Page: 882

View: 5564

DOWNLOAD NOW »

Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.

Free Space Optical Systems Engineering

Design and Analysis

Author: Larry B. Stotts

Publisher: John Wiley & Sons

ISBN: 1119279046

Category: Science

Page: 528

View: 6109

DOWNLOAD NOW »

Gets you quickly up to speed with the theoretical and practical aspects of free space optical systems engineering design and analysis One of today's fastest growing system design and analysis disciplines is free space optical systems engineering for communications and remote sensing applications. It is concerned with creating a light signal with certain characteristics, how this signal is affected and changed by the medium it traverses, how these effects can be mitigated both pre- and post-detection, and if after detection, it can be differentiated from noise under a certain standard, e.g., receiver operating characteristic. Free space optical systems engineering is a complex process to design against and analyze. While there are several good introductory texts devoted to key aspects of optics—such as lens design, lasers, detectors, fiber and free space, optical communications, and remote sensing—until now, there were none offering comprehensive coverage of the basics needed for optical systems engineering. If you're an upper-division undergraduate, or first-year graduate student, looking to acquire a practical understanding of electro-optical engineering basics, this book is intended for you. Topics and tools are covered that will prepare you for graduate research and engineering in either an academic or commercial environment. If you are an engineer or scientist considering making the move into the opportunity rich field of optics, this all-in-one guide brings you up to speed with everything you need to know to hit the ground running, leveraging your experience and expertise acquired previously in alternate fields. Following an overview of the mathematical fundamentals, this book provides a concise, yet thorough coverage of, among other crucial topics: Maxwell Equations, Geometrical Optics, Fourier Optics, Partial Coherence theory Linear algebra, Basic probability theory, Statistics, Detection and Estimation theory, Replacement Model detection theory, LADAR/LIDAR detection theory, optical communications theory Critical aspects of atmospheric propagation in real environments, including commonly used models for characterizing beam, and spherical and plane wave propagation through free space, turbulent and particulate channels Lasers, blackbodies/graybodies sources and photodetectors (e.g., PIN, ADP, PMT) and their inherent internal noise sources The book provides clear, detailed discussions of the basics for free space optical systems design and analysis, along with a wealth of worked examples and practice problems—found throughout the book and on a companion website. Their intent is to help you test and hone your skill set and assess your comprehension of this important area. Free Space Optical Systems Engineering is an indispensable introduction for students and professionals alike.

Applied Electro Optics

Author: Louis Desmarais

Publisher: Pearson Education

ISBN: 0132441829

Category: Technology & Engineering

Page: 352

View: 5979

DOWNLOAD NOW »

A "back-to-basics" guide to opto-electronic circuit design and construction. To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design. In Part I, the book introduces the basic theory of opto-electronics, including: Maxwell's equations and the wave nature of light Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer Diffraction effects and diffraction gratings Polarization and electro-optic modulation Photons, basic quantum theory, and spectroscopic techniques Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding. Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical receivers demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission. If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Systems Engineering and Analysis of Electro-Optical and Infrared Systems

Author: William Wolfgang Arrasmith

Publisher: CRC Press

ISBN: 1466579935

Category: Technology & Engineering

Page: 828

View: 5059

DOWNLOAD NOW »

Electro-optical and infrared systems are fundamental in the military, medical, commercial, industrial, and private sectors. Systems Engineering and Analysis of Electro-Optical and Infrared Systems integrates solid fundamental systems engineering principles, methods, and techniques with the technical focus of contemporary electro-optical and infrared optics, imaging, and detection methodologies and systems. The book provides a running case study throughout that illustrates concepts and applies topics learned. It explores the benefits of a solid systems engineering-oriented approach focused on electro-optical and infrared systems. This book covers fundamental systems engineering principles as applied to optical systems, demonstrating how modern-day systems engineering methods, tools, and techniques can help you to optimally develop, support, and dispose of complex, optical systems. It introduces contemporary systems development paradigms such as model-based systems engineering, agile development, enterprise architecture methods, systems of systems, family of systems, rapid prototyping, and more. It focuses on the connection between the high-level systems engineering methodologies and detailed optical analytical methods to analyze, and understand optical systems performance capabilities. Organized into three distinct sections, the book covers modern, fundamental, and general systems engineering principles, methods, and techniques needed throughout an optical system’s development lifecycle (SDLC); optical systems building blocks that provide necessary optical systems analysis methods, techniques, and technical fundamentals; and an integrated case study that unites these two areas. It provides enough theory, analytical content, and technical depth that you will be able to analyze optical systems from both a systems and technical perspective.

Optical Design Fundamentals for Infrared Systems

Author: Max J. Riedl

Publisher: SPIE Press

ISBN: 9780819440518

Category: Science

Page: 182

View: 9002

DOWNLOAD NOW »

The practical, popular 1995 tutorial has been thoroughly revised and updated, reflecting developments in technology and applications during the past decade. New chapters address wave aberrations, thermal effects, design examples, and diamond turning.

Electro-Optics Handbook

Author: Ronald Waynant,Marwood Ediger

Publisher: McGraw Hill Professional

ISBN: 0071500235

Category: Technology & Engineering

Page: 992

View: 8581

DOWNLOAD NOW »

All-inclusive opto electronics guide A valuable "must-have" tool for electronic and optical engineers, this Handbook is the only single-volume, tell-it-all guide to the use of optical devices and light in electronics systems. Developed by a towering figure in the field, this manual familiarizes you with UV, VUV and X-Ray lasers; visible, solid-state, semiconductor and infrared gas lasers; FEL and ultrashort laser pulses; visible and infrared optical materials; infrared and imaging detectors; optical fibers and fiber optic sensors; holography; laser spectroscopy and photochemistry; high resolution lithography for optoelectronics; and much more. In this up-to-the-minute edition you'll find new chapters on optical communications, electro-optic devices, and high intensity optical fields, in addition to extensively updated material throughout, and abundant charts, diagrams and data tables.

Introduction to Infrared and Electro-optical Systems

Author: Ronald G. Driggers,Melvin H. Friedman,Jonathan Nichols

Publisher: Artech House

ISBN: 1608071006

Category: Technology & Engineering

Page: 583

View: 1481

DOWNLOAD NOW »

This newly revised and updated edition of a classic Artech House book offers a current and complete and introduction to the analysis and design of Electro-Optical Systems (EO) imaging systems. The Second Edition provides numerous updates and brand new coverage of today's most important areas, including the integrated spatial frequency approach and a focus on the weapons of terrorists as objects of interest. This comprehensive reference details the principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems and shows you how to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. This practical resource includes over 780 time-saving equations.

Building Electro-Optical Systems

Making It all Work

Author: Philip C. D. Hobbs

Publisher: John Wiley & Sons

ISBN: 111821109X

Category: Technology & Engineering

Page: 820

View: 5678

DOWNLOAD NOW »

Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.

Lens Design Fundamentals

Author: Rudolf Kingslake,R. Barry Johnson

Publisher: Academic Press

ISBN: 9780080921563

Category: Technology & Engineering

Page: 569

View: 8438

DOWNLOAD NOW »

Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 Strong emphasis on how to effectively use software design packages, indispensable to today’s lens designer Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies. This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21st-century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more. Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner. Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980). R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference. Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978 Strong emphasis on how to effectively use software design packages, indispensable to today’s lens designer Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field

Electro-optical Imaging System Performance

Author: Gerald C. Holst

Publisher: N.A

ISBN: 9781510611023

Category: Electrooptical devices

Page: 389

View: 719

DOWNLOAD NOW »

This sixth edition emphasizes staring array analysis and provides: NVIPM, TRM4, and TOD comparisons Frequency (MTF) versus spatial (pixels on target) analysis Two-dimensional versus two-directional analyses F?/d approach to modeling and system resolution In-band and out-of-band sampling artifacts Numerous trade studies

Fiber Optic Measurement Techniques

Author: Rongqing Hui,Maurice O'Sullivan

Publisher: Academic Press

ISBN: 9780080920436

Category: Technology & Engineering

Page: 672

View: 5135

DOWNLOAD NOW »

Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today’s photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand. Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to: Understand the implications of various measurement results and system performance qualifications Characterize modern optical systems and devices Select optical devices and subsystems in optical network design and implementation Design innovative instrumentations for fiber optic systems This book brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems. "Optical fiber communication systems and networks constitute the core of the telecom infrastructure of the information society worldwide. Accurate knowledge of the properties of the contituent components, and of the performance of the subsystems and systems must be obtained in order to ensure reliable transmission, distribution, and delivery of information. This book is an authoritative and comprehensive treatment of fiber-optic measurement techniques, including not only fundamental principles and methodologies but also various instrumentations and practical implementations. It is an excellent up-to-date resource and reference for the academic and industrial researcher as well as the field engineer in manufacturing and network operations." –Dr. Tingye Li, AT&T Labs (retired) Rongqing Hui received his PhD in Electrical Engineering from Politecnico di Torino, Italy in 1993. He is currently a tenured professor in the department of Electrical Engineering and Computer Science at the University of Kansas. He has published more than 90 refereed technical papers in the area of fiber-optic communications and holds 13 patents. Dr. Hui currently serves as an Associate Editor of IEEE Transactions on Communications. Maurice O'Sullivan has worked for Nortel for a score of years, at first in the optical cable business, developing factory-tailored metrology for optical fiber, but, in the main, in the optical transmission business developing, modeling and verifying physical layer designs & performance of Nortel's line and highest rate transmission product including OC-192, MOR, MOR+, LH1600G, eDCO and eDC40G. He holds a Ph.D. in physics (high resolution spectroscopy) from the University of Toronto, is a Nortel Fellow and has been granted more than 30 patents. The only book to combine explanations of the basic principles with latest techniques to enable the engineer to develop photonic systems of the future Careful and systematic presentation of measurement methods to help engineers to choose the most appropriate for their application The latest methods covered, such as real-time optical monitoring and phase coded systems and subsystems, making this the most up-to-date guide to fiber optic measurement on the market

Applied Optics Fundamentals and Device Applications

Nano, MOEMS, and Biotechnology

Author: Mark A. Mentzer

Publisher: CRC Press

ISBN: 143982908X

Category: Medical

Page: 368

View: 9622

DOWNLOAD NOW »

How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology—and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems—including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.

Optomechanical Systems Engineering

Author: Kasunic

Publisher: John Wiley & Sons

ISBN: 1118809327

Category: Science

Page: 272

View: 2767

DOWNLOAD NOW »

Optomechanical Systems Engineering bridges the gap between mechanical engineering and optical engineering. Following an introduction to optical fundamentals, the author provides detailed information about optical fabrication, tolerancing, and alignment. Elements of structural design are examined from mechanical, optical, and vibrational viewpoints. Kasunic then explores the principles, materials properties, and selection related to thermal design, kinematic design, and system design.

Electro-optical System Analysis and Design

A Radiometry Perspective

Author: Cornelius J. Willers

Publisher: SPIE-International Society for Optical Engineering

ISBN: 9780819495693

Category: Science

Page: 493

View: 6201

DOWNLOAD NOW »

The field of radiometry can be dangerous territory to the uninitiated, faced with the risk of errors and pitfalls. The concepts and tools explored in this book empower readers to comprehensively analyse, design, and optimise real-world systems. This book builds on the foundation of solid theoretical understanding, and strives to provide insight into hidden subtleties in radiometric analysis. Atmospheric effects provide opportunity for a particularly rich set of intriguing observations. The term 'radiometry' is used in its wider context to specifically cover the calculation of flux. This wider definition is commonly used by practitioners in the field to cover all forms of manipulation, including creation, measurement, calculation, modeling, and simulation of optical flux. Two concurrent themes frame the discussion: fragmenting a complex problem into simple building blocks and then designing complex systems from smaller elements. Analysis and design, as a creative synthesis of something new, cannot be easily taught other than by example; for this purpose, several case studies are presented.This book also provides a number of problems, some with solutions demonstrated in Matlab(R) and the Python' pyradi toolkit.

Modern Optical Engineering, 4th Ed.

Author: Warren Smith

Publisher: McGraw Hill Professional

ISBN: 0071476873

Category: Technology & Engineering

Page: 764

View: 3099

DOWNLOAD NOW »

The Latest Advances in Optical Engineering and Lens Technology Long-established as the definitive optics text and reference, Modern Optical Engineering has been completely revised and updated to equip you with all the latest optical and lens advances. The Fourth Edition now contains cutting-edge information on optical engineering theory, design, and practice, including new chapters on ray tracing, optical system design, and third-order aberration theory. Written by the renowned optical scientist Warren J. Smith, this state-of-the-art guide provides unsurpassed coverage of image formation, basic optical devices, image evaluation, fabrication and testing methods, and more. Comprehensive and up-to-date, Modern Optical Engineering features: The latest information on optical engineering theory, design, and practice Over 150 detailed illustrations New to this edition: new coverage of ray tracing, optical system design, and third-order aberration theory; new lens designs; new optical design software; and new problems and exercises Inside This Updated Optical Engineering Classic • Image formation • Aberrations • Prisms and mirrors • The eye • Stops and apertures • Optical materials • Interference coatings • Radiometry and photometry • Basic optical devices • Optical systems • Ray tracing • Third-order aberration theory • Image evaluation • Design of optical systems • 44 lens designs • Optics fabrication and testing

Optical Design

Applying the Fundamentals

Author: Max J. Riedl

Publisher: Society of Photo Optical

ISBN: 9780819477996

Category: Technology & Engineering

Page: 170

View: 5754

DOWNLOAD NOW »

This text is written for engineers and scientists who have some experience in the field of optics and want to know more about the details and derivations of equations used in optical design. Organized by topic, the book begins with the fundamental law of geometrical optics, Snell's law of refraction, and states the paraxial ray trace equations, then moves on to thin lenses and increasingly more sophisticated components and multi-element systems. Each topic is covered in depth and provides comprehensive information on performance and limitations. While the text is based on general optical laws, special emphasis has been placed on the two major infrared regions--the mid-wave (MWIR) and the long-wave (LWIR). This is particularly important with regard to diffractive hybrids, which have found their place in these long-wavelength areas for the correction of chromatic aberrations and athermalization. Comments relating to single-point diamond turning have also been included because this process is predominantly used to produce optical elements for the infrared regions.

Practical Optical System Layout: And Use of Stock Lenses

Author: Warren Smith

Publisher: McGraw Hill Professional

ISBN: 9780070592544

Category: Science

Page: 201

View: 5710

DOWNLOAD NOW »

A complete optical systems design course for general optical engineers! The "first cut" design of an optical system -- anything from a telescope to a complicated VR helmet -- is usually not done by a specialist but by a more general optical engineer. This book details the basic design principles and techniques for doing so in a clear, concise, "low-math" way that such generalists will readily understand -- and appreciate. Practical, step-by-step coverage includes succinct equations, simple diagrams, and clear explanations. The chapter on selecting stock lens (to test a concept or to prove out a possible finished device) should be especially useful.