From Number Theory to Physics

Author: Michel Waldschmidt,Pierre Moussa,Jean-Marc Luck,Claude Itzykson

Publisher: Springer Science & Business Media

ISBN: 3662028387

Category: Science

Page: 690

View: 4651

DOWNLOAD NOW »

The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch.

Number Theory and Physics

Proceedings of the Winter School, Les Houches, France, March 7–16, 1989

Author: Jean-Marc Luck,Pierre Moussa,Michel Waldschmidt

Publisher: Springer Science & Business Media

ISBN: 3642754058

Category: Science

Page: 311

View: 5829

DOWNLOAD NOW »

7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.

Group Theory and Physics

Author: S. Sternberg

Publisher: Cambridge University Press

ISBN: 9780521558853

Category: Mathematics

Page: 429

View: 4575

DOWNLOAD NOW »

This book is an introduction to group theory and its application to physics. The author considers the physical applications and develops mathematical theory in a presentation that is unusually cohesive and well-motivated. The book discusses many modern topics including molecular vibrations, homogeneous vector bundles, compact groups and Lie groups, and there is much discussion of the group SU(n) and its representations, which is of great significance in elementary particle physics. The author also considers applications to solid-state physics. This is an essential resource for senior undergraduates and researchers in physics and applied mathematics.

Q-series with Applications to Combinatorics, Number Theory, and Physics

A Conference on Q-series with Applications to Combinatorics, Number Theory, and Physics, October 26-28, 2000, University of Illinois

Author: Bruce (University of Illinois Berndt,Bruce C. Berndt,Ken Ono

Publisher: American Mathematical Soc.

ISBN: 0821827464

Category: Mathematics

Page: 277

View: 7064

DOWNLOAD NOW »

The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two English mathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions.In 1940, G. H. Hardy described what we now call Ramanujan's famous $_1\psi_1$ summation theorem as 'a remarkable formula with many parameters'. This is now one of the fundamental theorems of the subject. Despite humble beginnings, the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of the papers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.

Quantenmechanik für Fortgeschrittene

QM II

Author: Franz Schwabl

Publisher: Springer-Verlag

ISBN: 3662096307

Category: Science

Page: 419

View: 3926

DOWNLOAD NOW »

Aufbauend auf der Quantenmechanik desselben Autors werden hier fortgeschrittene Themen behandelt: I Vielteilchensysteme, II Relativistische Wellengleichungen, III Relativistische Felder. Die in gewohnter Weise stringente mathematische Darstellung wird durch die Angabe aller Zwischenschritte, durch zahlreiche Anwendungsbeispiele im Text und Übungen ergänzt. Der Text legt insbesondere durch Darstellung der relativistischen Wellengleichungen und ihrer Symmetrieeigenschaften sowie der quantenfeldtheoretischen Grundlagen das Fundament für das weitere Studium von Festkörperphysik, Kern- und Elementarteilchenphysik.

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 5497

DOWNLOAD NOW »

Frontiers in Number Theory, Physics, and Geometry II

On Conformal Field Theories, Discrete Groups and Renormalization

Author: Pierre E. Cartier,Bernard Julia,Pierre Moussa,Pierre Vanhove

Publisher: Springer Science & Business Media

ISBN: 3540303081

Category: Mathematics

Page: 789

View: 3553

DOWNLOAD NOW »

Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.

Frontiers in Number Theory, Physics, and Geometry I

On Random Matrices, Zeta Functions, and Dynamical Systems

Author: Pierre E. Cartier,Bernard Julia,Pierre Moussa,Pierre Vanhove

Publisher: Springer

ISBN: 9783540231899

Category: Mathematics

Page: 624

View: 7614

DOWNLOAD NOW »

The relation between mathematics and physics has a long history, in which the role of number theory and of other more abstract parts of mathematics has recently become more prominent. More than 10 years after a first meeting between number theorists and physicists at the Centre de Physique des Houches, a second two-week event focused on the broader interface of number theory, geometry, and physics. This book collects the material presented at this meeting.

Group Theory in Physics

Author: J. F. Cornwell

Publisher: Academic Pr

ISBN: N.A

Category: Group theory

Page: 628

View: 1606

DOWNLOAD NOW »

Recent devopments, particularly in high-energy physics, have projected group theory and symmetry consideration into a central position in theoretical physics. These developments have taken physicists increasingly deeper into the fascinating world of pure mathematics. This work presents important mathematical developments of the last fifteen years in a form that is easy to comprehend and appreciate.

Emerging Applications of Number Theory

Author: Dennis A. Hejhal,Joel Friedman,Martin C. Gutzwiller,Andrew M. Odlyzko

Publisher: Springer Science & Business Media

ISBN: 1461215447

Category: Mathematics

Page: 697

View: 4256

DOWNLOAD NOW »

Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.

Number Theory in Science and Communication

With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity

Author: Manfred Schroeder

Publisher: Springer Science & Business Media

ISBN: 3540852972

Category: Science

Page: 431

View: 6429

DOWNLOAD NOW »

"Number Theory in Science and Communication" is a well-known introduction for non-mathematicians to this fascinating and useful branch of applied mathematics . It stresses intuitive understanding rather than abstract theory and highlights important concepts such as continued fractions, the golden ratio, quadratic residues and Chinese remainders, trapdoor functions, pseudo primes and primitive elements. Their applications to problems in the real world are one of the main themes of the book. This revised fifth edition is augmented by recent advances in coding theory, permutations and derangements and a chapter in quantum cryptography. From reviews of earlier editions – "I continue to find [Schroeder’s] Number Theory a goldmine of valuable information. It is a marvelous book, in touch with the most recent applications of number theory and written with great clarity and humor.’ Philip Morrison (Scientific American) "A light-hearted and readable volume with a wide range of applications to which the author has been a productive contributor – useful mathematics outside the formalities of theorem and proof." Martin Gardner

Surveys in Number Theory

Author: Krishnaswami Alladi

Publisher: Springer Science & Business Media

ISBN: 0387785108

Category: Mathematics

Page: 188

View: 6988

DOWNLOAD NOW »

Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).

Mobius Inversion in Physics

Author: Nanxian Chen

Publisher: World Scientific

ISBN: 9814291641

Category: Mathematics

Page: 288

View: 1795

DOWNLOAD NOW »

This book attempts to bridge the gap between the principles of pure mathematics and the applications in physical science. After the Mobius inversion formula had been considered as purely academic, or beyond what was useful in the physics community for more than 150 years, the apparently obscure result in classical mathematics suddenly appears to be connected to a variety of important inverse problems in physical science. This book only requires readers to have some background in elementary calculus and general physics, and prerequisite knowledge of number theory is not needed. It will be attractive to our multidisciplinary readers interested in the Mobius technique, which is a tiny but important part of the number-theoretic methods. It will inspire many students and researchers in both physics and mathematics. In a practical problem, continuity and discreteness are often correlated, and few textbook have given attention to this wide and important field as this book. Clearly, this book will be an essential supplement for many existing courses such as mathematical physics, elementary number theory and discrete mathematics.

Group Theory and Its Application to Physical Problems

Author: Morton Hamermesh

Publisher: Courier Corporation

ISBN: 0486140393

Category: Science

Page: 544

View: 5821

DOWNLOAD NOW »

One of the best-written, most skillful expositions of group theory and its physical applications, directed primarily to advanced undergraduate and graduate students in physics, especially quantum physics. With problems.

Lie Theory and Its Applications in Physics

IX International Workshop

Author: Vladimir Dobrev

Publisher: Springer Science & Business Media

ISBN: 4431542701

Category: Mathematics

Page: 554

View: 7813

DOWNLOAD NOW »

Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory.

Q-series with Applications to Combinatorics, Number Theory, and Physics

A Conference on Q-series with Applications to Combinatorics, Number Theory, and Physics, October 26-28, 2000, University of Illinois

Author: Bruce (University of Illinois Berndt,Bruce C. Berndt,Ken Ono

Publisher: American Mathematical Soc.

ISBN: 0821827464

Category: Mathematics

Page: 277

View: 6302

DOWNLOAD NOW »

The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two English mathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions.In 1940, G. H. Hardy described what we now call Ramanujan's famous $_1\psi_1$ summation theorem as 'a remarkable formula with many parameters'. This is now one of the fundamental theorems of the subject. Despite humble beginnings, the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of the papers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.

Number Theory in Science and Communication

With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity

Author: M.R. Schroeder

Publisher: Springer Science & Business Media

ISBN: 3540265988

Category: Mathematics

Page: 367

View: 6914

DOWNLOAD NOW »

Number Theory in Science and Communication introductes non-mathematicians to the fascinating and diverse applications of number theory. This best-selling book stresses intuitive understanding rather than abstract theory. This revised fourth edition is augmented by recent advances in primes in progressions, twin primes, prime triplets, prime quadruplets and quintruplets, factoring with elliptic curves, quantum factoring, Golomb rulers and "baroque" integers.