Extended Irreversible Thermodynamics

Author: David Jou,Jose Casas-Vazquez,Georgy Lebon

Publisher: Springer Science & Business Media

ISBN: 3642976719

Category: Science

Page: 383

View: 6068


Modern technology strives towards higher speed, higher power, and higher miniaturiza tion. In these conditions, the classical transport equations must be updated in order to incorporate memory, non-local, and non-linear effects. These effects have been studied by starting from microscopic models which are specific to particular systems and whose solution requires mathematical approximations and boundary conditions. The aim of extended irreversible thermodynamics is to complement such microscopic analyses with a macroscopic framework which could play, with respect to the generalized trans port equations incorporating the aforementioned effects, a role similar to the one played by classical thermodynamics with respect to the classical transport equations. Such a macroscopic framework is particularly useful for comparing the results obtained from various microscopic models, for placing some restrictions on the range of validity of different approximations, and for settling a discussion on some basic concepts that arise unavoidably in a formalism that crosses the frontiers of the local-equilibrium theory. Extended irreversible thermodynamics is not at all in conflict with the classical theory of non-equilibrium thermodynamics and rational thermodynamics but must be viewed as a relevant extension of the scope of these descriptions. For the student or the researcher, it may be stimulating to go beyond the classical theories and to enter a of new ideas, new applications, and new problems.

Statistical Foundations of Irreversible Thermodynamics

Author: Roberto Luzzi,Aurea R. Vasconcellos,J. Galvao Ramos

Publisher: Springer Science & Business Media

ISBN: 3322800199

Category: Science

Page: 170

View: 7608


Some aspects of the physics of many-body systems arbitrarily away from equilibrium, mainly the characterization and irreversible evolution of their macroscopic state, are considered. The present status of phenomenological irreversible thermodynamics is described. An approach for building a statistical thermodynamics - dubbed Informational-Statistical-Thermodynamics - based on a non-equilibrium statistical ensemble formalism is presented. The formalism can be considered as encompassed within the scope of the so-called Predictive Statistical Mechanics, in which the predictability of future states in terms of the knowledge of present and past states, and the question of historicity in the case of systems with complex behaviour, is its main characteristic. The book is recommended for researchers in the area of non-equilibrium statistical mechanics and thermodynamics, as well as a textbook for advanced courses for graduate students in the area of condensed matter physics.

Understanding Non-equilibrium Thermodynamics

Foundations, Applications, Frontiers

Author: Georgy Lebon,David Jou

Publisher: Springer Science & Business Media

ISBN: 9783540742524

Category: Science

Page: 326

View: 1222


Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.

Thermodynamics of Fluids Under Flow

Author: David Jou,José Casas-Vázquez,Manuel Criado-Sancho

Publisher: Springer Science & Business Media

ISBN: 9789400701991

Category: Science

Page: 301

View: 851


This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.

Non-Equilibrium Thermodynamics with Application to Solids

Dedicated to the Memory of Professor Theodor Lehmann

Author: W. Muschik

Publisher: Springer

ISBN: 3709143217

Category: Technology & Engineering

Page: 329

View: 5360


This book puts emphasis on developing the basic ideas behind the different approaches to non-equilibrium thermodynamics and on applying them to solids. After a survey about different approaches an introduction to their common fundamentals is given in the first part. In the second part the mechanical behavior of special materials such as viscoelasticity, viscoplasticity, viscoelastoplasticity, and thermoplasticity are discussed. The third part is devoted to extended thermodynamics. The basic ideas, phenomenological as well as microscopical, are reviewed and applied to thermo- and viscoelastic materials. Electromagnetic solids showing dielectric relaxation, such as ceramics, showing electromagneto-mechanical hysteresis and superconductivity are treated in the fourth part. In the last part stability with regard to constitutive equations is investigated. Especially stability of quasi-static processes and of elastic-plastic systems are discussed.

Fractional Derivatives for Physicists and Engineers

Volume I Background and Theory Volume II Applications

Author: Vladimir V. Uchaikin

Publisher: Springer Science & Business Media

ISBN: 3642339115

Category: Science

Page: 385

View: 7746


The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers— The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.

Generalized Thermodynamics

The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics

Author: Byung Chan Eu

Publisher: Springer Science & Business Media

ISBN: 0306480492

Category: Science

Page: 344

View: 9055


Despite a long history of almost 180 years stretching back to the times of Carnot and, later, Clausius and Lord Kelvin, amongst others following him, the subject of thermodynamics has not as yet seen its full maturity, in the sense that the theory of irreversible processes has remained incomplete. The works of L. Onsager, J. Meixner, I. Prigogine on the thermodyn- ics of linear irreversible processes are, in effect, the early efforts toward the desired goal of giving an adequate description of irreversible processes, but their theory is confined to near-equilibrium phenomena. The works in recent years by various research workers on the extension of the aforem- tioned thermodynamic theory of linear irreversible processes are further efforts toward the goal mentioned. The present work is another of such efforts and a contribution to the subject of generalizing the thermodyn- ics of reversible processes, namely, equilibrium thermodynamics, to that of irreversible processes—non-equilibrium thermodynamics, without being restricted to linear irreversible processes. In this context the terms ‘far - moved from equilibrium’ is often used in the literature, and such states of macroscopic systems and non-linear irreversible phenomena in them are the objects of interest in this work. The thermodynamics of processes, either reversible or irreversible, is a continuum mechanical theory of matter and energy and their exchange between different parts of the system, and as such it makes no direct r- erence to the molecules constituting the substance under consideration.

Entropy and Entropy Generation

Fundamentals and Applications

Author: J.S. Shiner

Publisher: Springer Science & Business Media

ISBN: 0306469324

Category: Science

Page: 246

View: 9996


Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a manner that not only appeals to the entropy specialist but also makes them accessible to the nonspecialist looking for an overview of the field. This book contains fourteen contributions by leading scientists in their fields. The content covers such topics as quantum thermodynamics, nonlinear processes, gravitational and irreversible thermodynamics, the thermodynamics of Taylor dispersion, higher order transport, the mesoscopic theory of liquid crystals, simulated annealing, information and biological aspects, global energy, photovoltaics, heat and mass transport and nonlinear electrochemical systems. Audience: This work will be of value to physicists, chemists, biologists and engineers interested in the theory and applications of entropy and its generation.

Modern Thermodynamics

From Heat Engines to Dissipative Structures

Author: Dilip Kondepudi,Ilya Prigogine

Publisher: John Wiley & Sons

ISBN: 1118698703

Category: Science

Page: 552

View: 3597


Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into ‘thermodynamics’ and ‘kinetics’ into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists. Fully revised and expanded, this new edition includes the following updates and features: Includes a completely new chapter on Principles of Statistical Thermodynamics. Presents new material on solar and wind energy flows and energy flows of interest to engineering. Covers new material on self-organization in non-equilibrium systems and the thermodynamics of small systems. Highlights a wide range of applications relevant to students across physical sciences and engineering courses. Introduces students to computational methods using updated Mathematica codes. Includes problem sets to help the reader understand and apply the principles introduced throughout the text. Solutions to exercises and supplementary lecture material provided online at http://sites.google.com/site/modernthermodynamics/. Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition is an essential resource for undergraduate and graduate students taking a course in thermodynamics.

Nonequilibrium Thermodynamics

Transport and Rate Processes in Physical, Chemical and Biological Systems

Author: Yasar Demirel

Publisher: Newnes

ISBN: 0444595813

Category: Technology & Engineering

Page: 792

View: 912


Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. Informs and updates on all the latest developments in the field Contributions from leading authorities and industry experts A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems Presents a unified analysis for transport and rate processes in various time and space scales Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories Has 198 fully solved examples and 287 practice problems An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]

Kinetic Theory and Irreversible Thermodynamics

Author: Byung Chan Eu

Publisher: Wiley-Interscience


Category: Science

Page: 732

View: 485


For almost 20 years the author has conducted research on both macroscopic and molecular theories. The results of his investigation, which can be found in this work, are that irreversible thermodynamics and kinetic theory of matter are not separable especially for nonlinear irreversible processes occurring in systems removed far from equilibrium and thus must be examined together in a mutually consistent manner. Includes coverage of such topics as mass and momentum conservation law, bilinear and quadratic forms for entropy production, viscous phenomena, boundary conditions for velocities and much more.

Predictive Statistical Mechanics

A Nonequilibrium Ensemble Formalism

Author: Roberto Luzzi,Áurea R. Vasconcellos,J. Galvão Ramos

Publisher: Springer Science & Business Media

ISBN: 9781402004827

Category: Science

Page: 301

View: 2892


Within the framework of Jaynes' "Predictive Statistical Mechanics", this book presents a detailed derivation of an ensemble formalism for open systems arbitrarily away from equilibrium. This involves a large systematization and extension of the fundamental works and ideas of the outstanding pioneers Gibbs and Boltzmann, and of Bogoliubov, Kirkwood, Green, Mori, Zwanzig, Prigogine and Zubarev, among others. Chapters 1 to 5 include a description of the philosophy, foundations, and construction (methodology) of the formalism, including the derivation of a nonequilibrium grand-canonical ensemble for far-from-equilibrium systems as well as the derivation of a quantum nonlinear kinetic theory and a response function theory together with a theory of scattering. In chapter 6 applications of the theory are cataloged, making comparisons with experimental data (a basic step for the validation of any theory). Chapter 7 is devoted to the description of irreversible thermodynamics, providing a far-reaching generalization of Informational-Statistical Thermodynamics. The last chapter gives an overall picture of the formalism, and questions and criticisms related to it are discussed. Audience: This book is directed at an audience of researchers in the field of Statistical Mechanics and Thermodynamics of open nonequilibrium systems. In addition, it is relevant for the study of far-from-equilibrium processes in condensed matter, particularly semiconductor physics, as well as molecular Hydrodynamics, Rheology, many-body systems with complex behavior and areas of engineering, etc. The book can also be used as a complement to advanced graduate courses in Statistical Mechanics.

Electrical Properties of Polymers

Author: Evaristo Riande,Ricardo Diaz-Calleja

Publisher: CRC Press

ISBN: 9781420030471

Category: Technology & Engineering

Page: 600

View: 4201


Electrical Properties of Polymers describes the electric phenomena responsible for determining the chemical and supramolecular structure of polymers and polymeric materials. The authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.

Introduction to Non-equilibrium Physical Chemistry

Author: R. P. Rastogi

Publisher: Elsevier

ISBN: 9780080551807

Category: Science

Page: 356

View: 8645


Introduction to Non-equilibrium Physical Chemistry presents a critical and comprehensive account of Non-equilibrium Physical Chemistry from theoretical and experimental angle. It covers a wide spectrum of non-equilibrium phenomena from steady state close to equilibrium to non-linear region involving transition to bistability, temporal oscillations, spatio-temporal oscillations and finally to far from equilibrium phenomena such as complex pattern formation, dynamic instability at interfaces, Chaos and complex growth phenomena (fractals) in Physico-chemical systems. Part I of the book deals with theory and experimental studies concerning transport phenomena in membranes (Thermo-osmosis,Electroosmotic ) and in continuous systems (Thermal diffusion,Soret effect) close to equilibrium Experimental tests provide insight into the domain of validity of Non-equilibrium Thermodynamics ,which is the major theoretical tool for this region. Later developments in Extended Irreversible Thermodynamics and Non-equilibrium Molecular dynamics have been discussed in the Appendix. Part II deals with non-linear steady states and bifurcation to multistability, temporal and spatio- temporal oscillations (Chemical waves). Similarly Part II deals with more complex phenomena such as Chaos and fractal growth occurring in very far from equilibrium region. Newer mathematical techniques for investigating such phenomena along with available experimental studies. Part IV deals with analogous non-equilibrium phenomena occurring in the real systems (Socio-political, Finance and Living systems etc.) for which physico-chemical systems discussed in earlier chapters provide a useful model for development of theories based on non-linear science and science of complexity. The book provides a critical account of theoretical studies on non-equilibrium phenomenon from region close to equilibrium to far equilibrium Experimental studies have been reported which provide test of the theories and their limitations Impacts of the concepts developed in non-equilibrium Physical Chemistry in sociology, economics and other social science and living systems has been discussed

Alternative Mathematical Theory of Non-equilibrium Phenomena

Author: Dieter Straub

Publisher: Academic Press

ISBN: 9780080527079

Category: Science

Page: 377

View: 8039


Alternative Mathematical Theory of Non-equilibrium Phenomena presents an entirely new theoretical approach to complex non-equilibrium phenomena, especially Gibbs/Falk thermodynamics and fluid mechanics. This innovative new theory allows for inclusion of all state variables and introduces a new vector-dissipation velocity-which leads to useful restatements of momentum, the Second Law, and tensors for the laws of motion, friction, and heat conduction. This application-oriented text is relatively self-contained and is an excellent guide-book for engineers with a strong interest in fundamentals, or for professionals using applied mathematics and physics in engineering applications. This book emphasizes macroscopic phenomena, focusing specifically on gaseous states, though relations to liquid and crystalline states are also considered. The author presents a new Alternative Continuum Theory of Compressible Fluids (AT) which providesa qualitative description of the subject in predominantly physical terms, minimizing the mathematical premises. The methodology discussed has applications in a wide range of fields outside of physics in areas including General System Theory, TheoreticalEconomics, and Biophysics and Medicine. Presents the first theory capable of handling non-equilibria phenomena Offers a unified theory of all branches of macroscopic physics Considers a consistent and uniform view of reality, supported by modern mathematics, leading to results different than those produced by classical theories Results in a change of paradigms in physics, engineering, and natural philosophy

Non-equilibrium Thermodynamics for Engineers

Author: N.A

Publisher: World Scientific

ISBN: 9814329916

Category: Science

Page: 258

View: 7130


The book describes in a simple and practical way what non-equilibrium thermodynamics is and how it can add to engineering fields. It explains how to describe proper equations of transport, more precise than used so far, and how to use them to understand the waste of energy resources in central unit processes in the industry. It introduces the entropy balance as an additional equation to use, to create consistent thermodynamic models, and a systematic method for minimizing energy losses that are connected with transport of heat, mass, charge, momentum and chemical reactions. Readership: Senior undergraduate and graduate students in physics, chemistry, chemical engineering and mechanical engineering.