Essentials of Stochastic Processes

Author: Richard Durrett

Publisher: Springer

ISBN: 3319456148

Category: Mathematics

Page: 275

View: 308

DOWNLOAD NOW »

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Essentials of Stochastic Processes

Author: Richard Durrett

Publisher: Springer Science & Business Media

ISBN: 146143615X

Category: Mathematics

Page: 266

View: 2342

DOWNLOAD NOW »

This book is for a first course in stochastic processes taken by undergraduates or master’s students who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and mathematical finance. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding The book has undergone a thorough revision since the first edition. There are many new examples and problems with solutions that use the TI-83 to eliminate the tedious details of solving linear equations by hand. Some material that was too advanced for the level has been eliminated while the treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved. For example, the difficult subject of martingales is delayed until its usefulness can be seen in the treatment of mathematical finance. Richard Durrett received his Ph.D. in Operations Research from Stanford in 1976. He taught at the UCLA math department for nine years and at Cornell for twenty-five before moving to Duke in 2010. He is the author of 8 books and almost 200 journal articles, and has supervised more that 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

Essentials of Stochastic Processes

Author: Richard Durrett

Publisher: Springer

ISBN: 9783319833316

Category:

Page: 288

View: 8915

DOWNLOAD NOW »

In its revised new edition, this book covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales and mathematical finance. Offers many examples and more than 300 carefully chosen exercises for better understanding.

Stochastic Processes

Author: Richard F. Bass

Publisher: Cambridge University Press

ISBN: 113950147X

Category: Mathematics

Page: N.A

View: 6275

DOWNLOAD NOW »

This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for individual readers. Subjects covered include Brownian motion, stochastic calculus, stochastic differential equations, Markov processes, weak convergence of processes and semigroup theory. Applications include the Black–Scholes formula for the pricing of derivatives in financial mathematics, the Kalman–Bucy filter used in the US space program and also theoretical applications to partial differential equations and analysis. Short, readable chapters aim for clarity rather than full generality. More than 350 exercises are included to help readers put their new-found knowledge to the test and to prepare them for tackling the research literature.

Elementary Probability Theory with Stochastic Processes

Author: K. L. Chung

Publisher: Springer Science & Business Media

ISBN: 1475751141

Category: Mathematics

Page: 325

View: 5263

DOWNLOAD NOW »

In the past half-century the theory of probability has grown from a minor isolated theme into a broad and intensive discipline interacting with many other branches of mathematics. At the same time it is playing a central role in the mathematization of various applied sciences such as statistics, opera tions research, biology, economics and psychology-to name a few to which the prefix "mathematical" has so far been firmly attached. The coming-of-age of probability has been reflected in the change of contents of textbooks on the subject. In the old days most of these books showed a visible split personality torn between the combinatorial games of chance and the so-called "theory of errors" centering in the normal distribution. This period ended with the appearance of Feller's classic treatise (see [Feller l]t) in 1950, from the manuscript of which I gave my first substantial course in probability. With the passage of time probability theory and its applications have won a place in the college curriculum as a mathematical discipline essential to many fields of study. The elements of the theory are now given at different levels, sometimes even before calculus. The present textbook is intended for a course at about the sophomore level. It presupposes no prior acquaintance with the subject and the first three chapters can be read largely without the benefit of calculus.

An Introduction to Stochastic Modeling

Author: Howard M. Taylor,Samuel Karlin

Publisher: Academic Press

ISBN: 1483220443

Category: Mathematics

Page: 578

View: 5831

DOWNLOAD NOW »

An Introduction to Stochastic Modeling, Revised Edition provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Processes

An Introduction, Third Edition

Author: Peter Watts Jones,Peter Smith

Publisher: CRC Press

ISBN: 1498778127

Category: Mathematics

Page: 255

View: 1130

DOWNLOAD NOW »

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.

Basic Stochastic Processes

A Course Through Exercises

Author: Zdzislaw Brzezniak,Tomasz Zastawniak

Publisher: Springer Science & Business Media

ISBN: 1447105338

Category: Mathematics

Page: 226

View: 8771

DOWNLOAD NOW »

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Stochastic Processes and Applications

Diffusion Processes, the Fokker-Planck and Langevin Equations

Author: Grigorios A. Pavliotis

Publisher: Springer

ISBN: 1493913239

Category: Mathematics

Page: 339

View: 5478

DOWNLOAD NOW »

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Essentials of Stochastic Finance

Facts, Models, Theory

Author: Albert N. Shiryaev

Publisher: World Scientific

ISBN: 9810236050

Category: Business & Economics

Page: 834

View: 9231

DOWNLOAD NOW »

Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos.

Stochastic Processes

From Physics to Finance

Author: Wolfgang Paul,Jorg Baschnagel

Publisher: Springer Science & Business Media

ISBN: 3319003275

Category: Science

Page: 280

View: 4797

DOWNLOAD NOW »

This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

A Modern Introduction to Probability and Statistics

Understanding Why and How

Author: F.M. Dekking,C. Kraaikamp,H.P. Lopuhaä,L.E. Meester

Publisher: Springer Science & Business Media

ISBN: 1846281687

Category: Mathematics

Page: 488

View: 4962

DOWNLOAD NOW »

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

Introduction to Modeling and Analysis of Stochastic Systems

Author: V. G. Kulkarni

Publisher: Springer

ISBN: 9781441917720

Category: Mathematics

Page: 313

View: 8445

DOWNLOAD NOW »

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.

Stochastic Processes and Calculus

An Elementary Introduction with Applications

Author: Uwe Hassler

Publisher: Springer

ISBN: 3319234285

Category: Business & Economics

Page: 391

View: 2928

DOWNLOAD NOW »

This textbook gives a comprehensive introduction to stochastic processes and calculus in the fields of finance and economics, more specifically mathematical finance and time series econometrics. Over the past decades stochastic calculus and processes have gained great importance, because they play a decisive role in the modeling of financial markets and as a basis for modern time series econometrics. Mathematical theory is applied to solve stochastic differential equations and to derive limiting results for statistical inference on nonstationary processes. This introduction is elementary and rigorous at the same time. On the one hand it gives a basic and illustrative presentation of the relevant topics without using many technical derivations. On the other hand many of the procedures are presented at a technically advanced level: for a thorough understanding, they are to be proven. In order to meet both requirements jointly, the present book is equipped with a lot of challenging problems at the end of each chapter as well as with the corresponding detailed solutions. Thus the virtual text - augmented with more than 60 basic examples and 40 illustrative figures - is rather easy to read while a part of the technical arguments is transferred to the exercise problems and their solutions.

Discrete Stochastic Processes

Author: Robert G. Gallager

Publisher: Springer Science & Business Media

ISBN: 146152329X

Category: Technology & Engineering

Page: 271

View: 3824

DOWNLOAD NOW »

Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Probability Essentials

Author: Jean Jacod,Philip Protter

Publisher: Springer Science & Business Media

ISBN: 3642556825

Category: Mathematics

Page: 254

View: 8176

DOWNLOAD NOW »

This introduction can be used, at the beginning graduate level, for a one-semester course on probability theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as finance theory, electrical engineering, and operations research. The text covers the essentials in a directed and lean way with 28 short chapters, and assumes only an undergraduate background in mathematics. Readers are taken right up to a knowledge of the basics of Martingale Theory, and the interested student will be ready to continue with the study of more advanced topics, such as Brownian Motion and Ito Calculus, or Statistical Inference.

Stochastic Processes

Lectures given at Aarhus University

Author: Kiyosi Ito

Publisher: Springer Science & Business Media

ISBN: 3662100657

Category: Mathematics

Page: 236

View: 2321

DOWNLOAD NOW »

This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Lévy-Itô decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included.

Monte Carlo Statistical Methods

Author: Christian Robert,George Casella

Publisher: Springer Science & Business Media

ISBN: 1475741456

Category: Mathematics

Page: 649

View: 4686

DOWNLOAD NOW »

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

An Introduction to Statistical Learning

with Applications in R

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 8809

DOWNLOAD NOW »

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.