Elementary Applied Topology

Author: Robert Ghrist

Publisher: CreateSpace

ISBN: 9781502880857

Category: Mathematics

Page: 276

View: 2318

DOWNLOAD NOW »

This book gives an introduction to the mathematics and applications comprising the new field of applied topology. The elements of this subject are surveyed in the context of applications drawn from the biological, economic, engineering, physical, and statistical sciences.

The Structure and Stability of Persistence Modules

Author: Frédéric Chazal,Vin de Silva,Marc Glisse,Steve Oudot

Publisher: Springer

ISBN: 3319425455

Category: Mathematics

Page: 120

View: 2687

DOWNLOAD NOW »

This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects.

Research in Computational Topology

Author: Erin Wolf Chambers,Brittany Terese Fasy,Lori Ziegelmeier

Publisher: Springer

ISBN: 3319895931

Category: Mathematics

Page: 202

View: 3273

DOWNLOAD NOW »

Based on the first Workshop for Women in Computational Topology that took place in 2016, this volume assembles new research and applications in computational topology. Featured articles range over the breadth of the discipline, including topics such as surface reconstruction, topological data analysis, persistent homology, algorithms, and surface-embedded graphs. Applications in graphics, medical imaging, and GIS are discussed throughout the book. Four of the papers in this volume are the product of working groups that were established and developed during the workshop. Additional papers were also solicited from the broader Women in Computational Topology network. The volume is accessible to a broad range of researchers, both within the field of computational topology and in related disciplines such as statistics, computational biology, and machine learning.

Handbook of Discrete and Computational Geometry, Third Edition

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 1351645919

Category: Computers

Page: 1928

View: 6754

DOWNLOAD NOW »

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Handbook of Discrete and Computational Geometry, Third Edition

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 1498711421

Category: Computers

Page: 1928

View: 6417

DOWNLOAD NOW »

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Distributed Autonomous Robotic Systems

The 13th International Symposium

Author: Roderich Groß,Andreas Kolling,Spring Berman,Emilio Frazzoli,Alcherio Martinoli,Fumitoshi Matsuno,Melvin Gauci

Publisher: Springer

ISBN: 3319730088

Category: Technology & Engineering

Page: 697

View: 6821

DOWNLOAD NOW »

Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications.

Algebraic and Differential Topology

Author: R. V. Gamkrelidze

Publisher: CRC Press

ISBN: 9782881240355

Category: Mathematics

Page: 252

View: 1145

DOWNLOAD NOW »

Algebraic and Differential Topology presents in a clear, concise, and detailed manner the fundamentals of homology theory. It first defines the concept of a complex and its Betti groups, then discusses the topolgoical invariance of a Betti group. The book next presents various applications of homology theory, such as mapping of polyhedrons onto other polyhedrons as well as onto themselves. The third volume in L.S. Pontryagin's Selected Works, this book provides as many insights into algebraic topology for today's mathematician as it did when the author was making his initial endeavors into this field.

Homotopy Theory

Author: N.A

Publisher: Academic Press

ISBN: 9780080873169

Category: Mathematics

Page: 346

View: 3471

DOWNLOAD NOW »

Homotopy Theory

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 6991

DOWNLOAD NOW »

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Algebraic Topology

Author: Edwin H. Spanier

Publisher: Springer Science & Business Media

ISBN: 1468493221

Category: Mathematics

Page: 548

View: 467

DOWNLOAD NOW »

This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.

Applications of Algebraic Topology

Graphs and Networks. The Picard-Lefschetz Theory and Feynman Integrals

Author: S. Lefschetz

Publisher: Springer Science & Business Media

ISBN: 1468493671

Category: Mathematics

Page: 191

View: 6499

DOWNLOAD NOW »

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 563

DOWNLOAD NOW »

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.

Grundkurs Topologie

Author: Gerd Laures,Markus Szymik

Publisher: Springer-Verlag

ISBN: 3827422183

Category: Mathematics

Page: 242

View: 8683

DOWNLOAD NOW »

Die Topologie beschäftigt sich mit den qualitativen Eigenschaften geometrischer Objekte. Ihr Begriffsapparat ist so mächtig, dass kaum eine mathematische Struktur nicht mit Gewinn topologisiert wurde. Dieses Buch versteht sich als Brücke von den einführenden Vorlesungen der Analysis und Linearen Algebra zu den fortgeschrittenen Vorlesungen der Algebraischen und Geometrischen Topologie. Es eignet sich besonders für Studierende in einem Bachelor- oder Masterstudiengang der Mathematik, kann aber auch zum Selbststudium für mathematisch interessierte Naturwissenschaftler dienen. Die Autoren legen besonderen Wert auf eine moderne Sprache, welche die vorgestellten Ideen vereinheitlicht und damit erleichtert. Definitionen werden stets mit vielen Beispielen unterlegt und neue Konzepte werden mit zahlreichen Bildern illustriert. Über 170 Übungsaufgaben (mit Lösungen zu ausgewählten Aufgaben auf der Website zum Buch) helfen, die vermittelten Inhalte einzuüben und zu vertiefen. Viele Abschnitte werden ergänzt durch kurze Einblicke in weiterführende Themen, die einen Ausgangspunkt für Studienarbeiten oder Seminarthemen bieten. Neben dem üblichen Stoff zur mengentheoretischen Topologie, der Theorie der Fundamentalgruppen und der Überlagerungen werden auch Bündel, Garben und simpliziale Methoden angesprochen, welche heute zu den Grundbegriffen der Geometrie und Topologie gehören.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 8091

DOWNLOAD NOW »

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.