Dynamics of Multibody Systems

Author: Ahmed A. Shabana

Publisher: Cambridge University Press

ISBN: 9781139446518

Category: Science

Page: N.A

View: 2439

DOWNLOAD NOW »

Dynamics of Multibody Systems, 3rd Edition, first published in 2005, introduces multibody dynamics, with an emphasis on flexible body dynamics. Many common mechanisms such as automobiles, space structures, robots and micromachines have mechanical and structural systems that consist of interconnected rigid and deformable components. The dynamics of these large-scale, multibody systems are highly nonlinear, presenting complex problems that in most cases can only be solved with computer-based techniques. The book begins with a review of the basic ideas of kinematics and the dynamics of rigid and deformable bodies before moving on to more advanced topics and computer implementation. This revised third edition now includes important developments relating to the problem of large deformations and numerical algorithms as applied to flexible multibody systems. The book's wealth of examples and practical applications will be useful to graduate students, researchers, and practising engineers working on a wide variety of flexible multibody systems.

Dynamics of Multibody Systems

Author: Jens Wittenburg

Publisher: Springer Science & Business Media

ISBN: 3540739149

Category: Technology & Engineering

Page: 223

View: 8710

DOWNLOAD NOW »

Thank heavens for Jens Wittenburg, of the University of Karlsruhe in Germany. Anyone who’s been laboring for years over equation after equation will want to give him a great big hug. It is common practice to develop equations for each system separately and to consider the labor necessary for deriving all of these as inevitable. Not so, says the author. Here, he takes it upon himself to describe in detail a formalism which substantially simplifies these tasks.

Symbolic Modeling of Multibody Systems

Author: J-C. Samin,P. Fisette

Publisher: Springer Science & Business Media

ISBN: 940170287X

Category: Technology & Engineering

Page: 476

View: 8762

DOWNLOAD NOW »

Modeling and analysing multibody systems require a comprehensive understanding of the kinematics and dynamics of rigid bodies. In this volume, the relevant fundamental principles are first reviewed in detail and illustrated in conformity with the multibody formalisms that follow. Whatever the kind of system (tree-like structures, closed-loop mechanisms, systems containing flexible beams or involving tire/ground contact, wheel/rail contact, etc), these multibody formalisms have a common feature in the proposed approach, viz, the symbolic generation of most of the ingredients needed to set up the model. The symbolic approach chosen, specially dedicated to multibody systems, affords various advantages: it leads to a simplification of the theoretical formulation of models, a considerable reduction in the size of generated equations and hence in resulting computing time, and also enhanced portability of the multibody models towards other specific environments. Moreover, the generation of multibody models as symbolic toolboxes proves to be an excellent pedagogical medium in teaching mechanics.

Fundamentals of Multibody Dynamics

Theory and Applications

Author: Farid Amirouche

Publisher: Springer Science & Business Media

ISBN: 0817644067

Category: Technology & Engineering

Page: 684

View: 9983

DOWNLOAD NOW »

This textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.

Kinematics and Dynamics of Multibody Systems with Imperfect Joints

Models and Case Studies

Author: Paulo Flores,Jorge Ambrósio,J.C. Pimenta Claro,Hamid M. Lankarani

Publisher: Springer Science & Business Media

ISBN: 9783540743613

Category: Technology & Engineering

Page: 169

View: 6384

DOWNLOAD NOW »

This book presents suitable methodologies for the dynamic analysis of multibody mechanical systems with joints. It contains studies and case studies of real and imperfect joints. The book is intended for researchers, engineers, and graduate students in applied and computational mechanics.

Dynamic Simulations of Multibody Systems

Author: Murilo G. Coutinho

Publisher: Springer Science & Business Media

ISBN: 147573476X

Category: Computers

Page: 379

View: 1798

DOWNLOAD NOW »

This book introduces the techniques needed to produce realistic simulations and animations of particle and rigid body systems. It focuses on both the theoretical and practical aspects of developing and implementing physically based dynamic simulation engines that can be used to generate convincing animations of physical events involving particles and rigid bodies. It can also be used to produce accurate simulations of mechanical systems, such as a robotic parts feeder. The book is intended for researchers in computer graphics, computer animation, computer-aided mechanical design and modeling software developers.

Dynamics of Underactuated Multibody Systems

Modeling, Control and Optimal Design

Author: Robert Seifried

Publisher: Springer Science & Business Media

ISBN: 3319012282

Category: Technology & Engineering

Page: 249

View: 7192

DOWNLOAD NOW »

Underactuated multibody systems are intriguing mechatronic systems, as they posses fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.

Dynamics of Particles and Rigid Bodies

A Systematic Approach

Author: Anil Rao

Publisher: Cambridge University Press

ISBN: 9780521858113

Category: Science

Page: 509

View: 4325

DOWNLOAD NOW »

This 2006 work is intended for students who want a rigorous, systematic, introduction to engineering dynamics.

Dynamics of Flexible Multibody Systems

Rigid Finite Element Method

Author: Edmund Wittbrodt,Iwona Adamiec-Wójcik,Stanislaw Wojciech

Publisher: Springer Science & Business Media

ISBN: 354032352X

Category: Mathematics

Page: 227

View: 1206

DOWNLOAD NOW »

A new approach is presented in this book for modelling multi-body systems, which constitutes a substantial enhancement of the Rigid Finite Element method. The new approach is based on homogeneous transformations and joint coordinates. Apart from its simple physical interpretation and easy computer implementation, the method is also valuable for educational purposes since it impressively illustrates the impact of mechanical features on the mathematical model.

Strukturdynamik

Diskrete Systeme und Kontinua

Author: Robert Gasch,Klaus Knothe,Robert Liebich

Publisher: Springer-Verlag

ISBN: 3540889779

Category: Science

Page: 670

View: 1895

DOWNLOAD NOW »

Das Buch behandelt diskrete schwingungsfähige Systeme und beschreibt Analyseverfahren und Algorithmen zur Aufstellung von Bewegungsdifferentialgleichungen allgemeiner linearer Mehrkörpersysteme. Die Neuauflage vereint die Bände „Strukturdynamik I und II" (Gasch/Knothe) und legt im Bereich der numerischen Behandlung von Schwingungssystemen den Schwerpunkt auf die industrielle Anwendung. Das Buch wurde als Lehrbuch für Hochschulen und Fachhochschulen konzipiert, eignet sich aber auch zum Selbststudium für Ingenieure in Forschung und Industrie.

Rigid Body Dynamics of Mechanisms 2

2 Applications

Author: Hubert Hahn

Publisher: Springer Science & Business Media

ISBN: 9783540022374

Category: Computers

Page: 665

View: 1749

DOWNLOAD NOW »

The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

Advanced Multibody System Dynamics

Simulation and Software Tools

Author: Werner Schiehlen

Publisher: Springer Science & Business Media

ISBN: 9401706255

Category: Science

Page: 482

View: 1745

DOWNLOAD NOW »

The German Research Council (DFG) decided 1987 to establish a nationwide five year research project devoted to dynamics of multibody systems. In this project universities and research centers cooperated with the goal to develop a general pur pose multibody system software package. This concept provides the opportunity to use a modular structure of the software, i.e. different multibody formalisms may be combined with different simulation programmes via standardized interfaces. For the DFG project the database RSYST was chosen using standard FORTRAN 77 and an object oriented multibody system datamodel was defined. The project included • research on the fundamentals of the method of multibody systems, • concepts for new formalisms of dynamical analysis, • development of efficient numerical algorithms and • realization of a powerful software package of multibody systems. These goals required an interdisciplinary cooperation between mathematics, compu ter science, mechanics, and control theory. ix X After a rigorous reviewing process the following research institutions participated in the project (under the responsibility of leading scientists): Technical University of Aachen (Prof. G. Sedlacek) Technical University of Darmstadt (Prof. P. Hagedorn) University of Duisburg M. Hiller) (Prof.

Dynamics and Control of Multibody Systems

Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held July 30-August 5, 1988, with Support from the National Science Foundation

Author: Jerrold E. Marsden,Perinkulam Sambamurthy Krishnaprasad

Publisher: American Mathematical Soc.

ISBN: 0821851047

Category: Technology & Engineering

Page: 468

View: 5664

DOWNLOAD NOW »

The study of complex, interconnected mechanical systems with rigid and flexible articulated components is of growing interest to both engineers and mathematicians. Recent work in this area reveals a rich geometry underlying the mathematical models used in this context. In particular, Lie groups of symmetries, reduction, and Poisson structures play a significant role in explicating the qualitative properties of multibody systems. In engineering applications, it is important to exploit the special structures of mechanical systems. For example, certain mechanical problems involving control of interconnected rigid bodies can be formulated as Lie-Poisson systems. The dynamics and control of robotic, aeronautic, and space structures involve difficulties in modeling, mathematical analysis, and numerical implementation. For example, a new generation of spacecraft with large, flexible components are presenting new challenges to the accurate modeling and prediction of the dynamic behavior of such structures. Recent developments in Hamiltonian dynamics and coupling of systems with symmetries has shed new light on some of these issues, while engineering questions have suggested new mathematical structures. These kinds of considerations motivated the organization of the AMS-IMS-SIAM Joint Summer Research Conference on Control Theory and Multibody Systems, held at Bowdoin College in August, 1988. This volume contains the proceedings of that conference. The papers presented here cover a range of topics, all of which could be viewed as applications of geometrical methods to problems arising in dynamics and control. The volume contains contributions from some of the top researchers and provides an excellent overview of the frontiers of research in this burgeoning area.

Flexible Multibody Dynamics

Author: O. A. Bauchau

Publisher: Springer Science & Business Media

ISBN: 9789400703353

Category: Technology & Engineering

Page: 730

View: 6179

DOWNLOAD NOW »

The author developed this text over many years, teaching graduate courses in advanced dynamics and flexible multibody dynamics at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The book presents a unified treatment of rigid body dynamics, analytical dynamics, constrained dynamics, and flexible multibody dynamics. A comprehensive review of numerical tools used to enforce both holonomic and nonholonomic constraints is presented. Advanced topics such as Maggi’s, index-1, null space, and Udwadia and Kalaba’s formulations are presented because of their fundamental importance in multibody dynamics. Methodologies for the parameterization of rotation and motion are discussed and contrasted. Geometrically exact beams and shells formulations, which have become the standard in flexible multibody dynamics, are presented and numerical aspects of their finite element implementation detailed. Methodologies for the direct solution of the index-3 differential-algebraic equations characteristic of constrained multibody systems are presented. It is shown that with the help of proper scaling procedures, such equations are not more difficult to integrate than ordinary differential equations. This book is illustrated with numerous examples and should prove valuable to both students and researchers in the fields of rigid and flexible multibody dynamics.

Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures

Author: Edmund Wittbrodt,Marek Szczotka,Andrzej Maczyński,Stanisław Wojciech

Publisher: Springer Science & Business Media

ISBN: 3642298869

Category: Technology & Engineering

Page: 252

View: 1926

DOWNLOAD NOW »

This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.

Dynamics of Mechanical Systems

Author: Harold Josephs,Ronald Huston

Publisher: CRC Press

ISBN: 1420041924

Category: Science

Page: 776

View: 4855

DOWNLOAD NOW »

Mechanical systems are becoming increasingly sophisticated and continually require greater precision, improved reliability, and extended life. To meet the demand for advanced mechanisms and systems, present and future engineers must understand not only the fundamental mechanical components, but also the principles of vibrations, stability, and balance and the use of Newton's laws, Lagrange's equations, and Kane's methods. Dynamics of Mechanical Systems provides a vehicle for mastering all of this. Focusing on the fundamental procedures behind dynamic analyses, the authors take a vector-oriented approach and lead readers methodically from simple concepts and systems through the analysis of complex robotic and bio-systems. A careful presentation that balances theory, methods, and applications gives readers a working knowledge of configuration graphs, Euler parameters, partial velocities and partial angular velocities, generalized speeds and forces, lower body arrays, and Kane's equations. Evolving from more than three decades of teaching upper-level engineering courses, Dynamics of Mechanical Systems enables readers to obtain and refine skills ranging from the ability to perform insightful hand analyses to developing algorithms for numerical/computer analyses. Ultimately, it prepares them to solve real-world problems and make future advances in mechanisms, manipulators, and robotics.

Multibody Dynamics with Unilateral Contacts

Author: Friedrich Pfeiffer,Christoph Glocker

Publisher: John Wiley & Sons

ISBN: 3527618392

Category: Technology & Engineering

Page: 329

View: 5139

DOWNLOAD NOW »

As mechanical systems become more complex so do the mathematical models and simulations used to describe the interactions of their parts. One area of multibody theory that has received a great deal of attention in recent years is the dynamics of multiple contact situations occurring in continuous joints and couplings. Despite the rapid gains in our understanding of what occurs when continuous joints and couplings interact, until now there were no books devoted exclusively to this intriguing phenomenon. Focusing on the concerns of practicing engineers, Multibody Dynamics with Unilateral Contacts presents all theoretical and applied aspects of this subject relevant to a practical understanding of multiple unilateral contact situations in multibody mechanical systems. In Part 1, Professor Pfeiffer and Dr. Glocker provide an exhaustive review of the laws and principles governing the dynamics of unilateral contacts in multibody mechanical and technical systems. Among the topics covered are multibody and contact kinematics, the dynamics of rigid body systems, multiple contact configurations, detachment and stick-slip transitions, frictionless impacts, impacts with friction, and the Corner law of contact dynamics. In Part 2, the authors present numerous applications of the theories presented in Part 1. Each chapter in this part is devoted to a different law, theory, or model, such as discontinuous force laws, classical impact theory, Coulomb's friction law, and mechanical and mathematical models of impacts and friction. In addition, each chapter features several practical examples that allow engineers to observe the concepts described in action. Examples are drawn from a broad array of fields and range from hammering in gears as occurring in a synchronous generator to impacts and friction as observed in a child's woodpecker toy, from a demonstration of classical impact theory using an automobile gear box example, to Coulomb's friction law as applied to a turbine blade damper. Multibody Dynamics with Unilateral Contacts is an indispensable resource for mechanical engineers working on all types of multibody systems and the friction and vibration problems that can occur in them. It is also a valuable reference for researchers studying nonlinear dynamics. The only book devoted entirely to the theory and applications of onE of the most crucial aspects of multibody system design. This is the first book to focus exclusively on the theory and applications of multiple contact situations occurring in continuous joints and couplings in multibody systems. As such, it is a valuable resource for engineers working on mechanical systems with interrelated multiple parts. Multibody Dynamics with Unilateral Contacts * Provides a comprehensive examination of the laws and principles governing the dynamics of unilateral contacts in multibody mechanical and technical systems. * Presents the latest mathematical models and simulation techniques for describing the interactions of joints and couplings in multibody systems. * Describes practical applications for all the concepts covered. * Includes numerous examples drawn from a wide range of fascinating and enlightening real-world demonstrations, including everything from an airplane's landing gear to a child's toy.

Research and Applications in Structural Engineering, Mechanics and Computation

Author: Alphose Zingoni

Publisher: CRC Press

ISBN: 1315850788

Category: Science

Page: 960

View: 9673

DOWNLOAD NOW »

Research and Applications in Structural Engineering, Mechanics and Computation contains the Proceedings of the Fifth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2013, Cape Town, South Africa, 2-4 September 2013). Over 420 papers are featured. Many topics are covered, but the contributions may be seen to fall

Rigid Body Dynamics of Mechanisms

1 Theoretical Basis

Author: Hubert Hahn

Publisher: Springer Science & Business Media

ISBN: 9783540423737

Category: Technology & Engineering

Page: 336

View: 1174

DOWNLOAD NOW »

This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.