Diophantine Geometry

An Introduction

Author: Marc Hindry,Joseph H. Silverman

Publisher: Springer Science & Business Media

ISBN: 1461212103

Category: Mathematics

Page: 561

View: 7663

DOWNLOAD NOW »

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Heights in Diophantine Geometry

Author: Enrico Bombieri,Walter Gubler

Publisher: Cambridge University Press

ISBN: 9780521712293

Category: Mathematics

Page: 652

View: 4656

DOWNLOAD NOW »

This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.

Integral Points on Algebraic Varieties

An Introduction to Diophantine Geometry

Author: Pietro Corvaja

Publisher: Springer

ISBN: 9811026483

Category: Mathematics

Page: 75

View: 5561

DOWNLOAD NOW »

This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.

Eine Einladung in die Mathematik

Einblicke in aktuelle Forschung

Author: Dierk Schleicher,Malte Lackmann

Publisher: Springer-Verlag

ISBN: 3642257984

Category: Mathematics

Page: 228

View: 4425

DOWNLOAD NOW »

Diese Einladung zur Mathematik besteht aus 14 Beiträgen, viele davon von weltweit führenden Mathematikern geschrieben, die die Leser in spannende Aspekte aktueller mathematischer Forschung einführen. Die Artikel sind so vielfältig wie die Persönlichkeiten ihrer Autoren und zeigen, wie reich und lebendig die Mathematik als Forschungsgebiet ist. Das Buch richtet sich in erster Linie an interessierte Schüler und junge Studierende, die Mathematik aus der Schule oder von Wettbewerben kennen und die aktuelle Forschungsmathematik kennenlernen wollen. Zusammen mit einem Team junger "Testleser" haben die Herausgeber und Autoren in einem intensiven Bearbeitungsprozess die Texte für junge Leser verständlich gestaltet. Schüler, Lehrer, Mathematiker und alle Mathematik-Begeisterten werden in diesem vielseitigen und spannenden Buch genussvoll lesen.

On Finiteness in Differential Equations and Diophantine Geometry

Author: Dana Schlomiuk

Publisher: American Mathematical Soc.

ISBN: 9780821869857

Category: Mathematics

Page: 182

View: 1563

DOWNLOAD NOW »

This book focuses on finiteness conjectures and results in ordinary differential equations (ODEs) and Diophantine geometry. During the past twenty-five years, much progress has been achieved on finiteness conjectures, which are the offspring of the second part of Hilbert's 16th problem. Even in its simplest case, this is one of the very few problems on Hilbert's list which remains unsolved. These results are about existence and estimation of finite bounds for the number of limit cycles occurring in certain families of ODEs. The book describes this progress, the methods used (bifurcation theory, asymptotic expansions, methods of differential algebra, or geometry) and the specific results obtained. The finiteness conjectures on limit cycles are part of a larger picture that also includes finiteness problems in other areas of mathematics, in particular those in Diophantine geometry where remarkable results were proved during the same period of time. There is a chapter devoted to finiteness results in D The volume can be used as an independent study text for advanced undergraduates and graduate students studying ODEs or applications of differential algebra to differential equations and Diophantine geometry. It is also is a good entry point for researchers interested these areas, in particular, in limit cycles of ODEs, and in finiteness problems. Contributors to the volume include Andrey Bolibrukh and Alexandru Buium. Available from the AMS by A. Buium is Arithmetic Differential Equations, as Volume 118 in the Mathematical Surveys and Monographs series.

Diophantine geometry

proceedings

Author: Umberto Zannier

Publisher: Birkhauser

ISBN: 9788876422065

Category: Mathematics

Page: 390

View: 8417

DOWNLOAD NOW »

This book contains research articles on Diophantine Geometry, written by participants of a research program held at the Ennio De Giorgi Mathematical Research Center in Pisa, Italy, during the period April - July 2005. The authors are eminent experts in the field. Several subfields of the main topic are presented; the volume thus is particularly useful to get a broad overview of recent research developments.

PAMQ

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 6720

DOWNLOAD NOW »

Number Theory for the Millennium III

Author: Michael A. Bennett

Publisher: A K Peters/CRC Press

ISBN: N.A

Category: Mathematics

Page: 470

View: 1554

DOWNLOAD NOW »

Building on the tradition of an outstanding series of conferences at the University of Illinois at Urbana-Champaign, the organizers attracted an international group of scholars to open the new Millennium with a conference that reviewed the current state of number theory research and pointed to future directions in the field. The conference was the largest general number theory conference in recent history, featuring a total of 159 talks, with the plenary lectures given by George Andrews, Jean Bourgain, Kevin Ford, Ron Graham, Andrew Granville, Roger Heath-Brown, Christopher Hooley, Winnie Li, Kumar Murty, Mel Nathanson, Ken Ono, Carl Pomerance, Bjorn Poonen, Wolfgang Schmidt, Chris Skinner, K. Soundararajan, Robert Tijdeman, Robert Vaughan, and Hugh Williams. The Proceedings Volumes of the conference review some of the major number theory achievements of this century and to chart some of the directions in which the subject will be heading during the new century. These volumes will serve as a useful reference to researchers in the area and an introduction to topics of current interest in number theory for a general audience in mathematics.

Model Theory : An Introduction

Author: David Marker

Publisher: Springer Science & Business Media

ISBN: 0387987606

Category: Mathematics

Page: 345

View: 8355

DOWNLOAD NOW »

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures

Newsletter

Author: New Zealand Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 2854

DOWNLOAD NOW »

Algebraische Zahlentheorie

Author: Jürgen Neukirch

Publisher: Springer-Verlag

ISBN: 3540376631

Category: Mathematics

Page: 595

View: 9532

DOWNLOAD NOW »

Algebraische Zahlentheorie: eine der traditionsreichsten und aktuellsten Grunddisziplinen der Mathematik. Das vorliegende Buch schildert ausführlich Grundlagen und Höhepunkte. Konkret, modern und in vielen Teilen neu. Neu: Theorie der Ordnungen. Plus: die geometrische Neubegründung der Theorie der algebraischen Zahlkörper durch die "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt", die bis hin zum "Grothendieck-Riemann-Roch-Theorem" führt.

Elementary Methods in Number Theory

Author: Melvyn B. Nathanson

Publisher: Springer Science & Business Media

ISBN: 0387227385

Category: Mathematics

Page: 514

View: 670

DOWNLOAD NOW »

This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.

The 1-2-3 of Modular Forms

Lectures at a Summer School in Nordfjordeid, Norway

Author: Jan Hendrik Bruinier,Gerard van der Geer,Günter Harder,Don Zagier

Publisher: Springer Science & Business Media

ISBN: 9783540741190

Category: Mathematics

Page: 266

View: 6562

DOWNLOAD NOW »

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Maß und Kategorie

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 9656

DOWNLOAD NOW »

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Automorphe Formen

Author: Anton Deitmar

Publisher: Springer-Verlag

ISBN: 3642123902

Category: Mathematics

Page: 252

View: 8100

DOWNLOAD NOW »

Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.