Feynman Amplitudes, Periods and Motives

Author: Luis Álvarez-Cónsul,José Ignacio Burgos-Gil,Kurusch Ebrahimi-Fard

Publisher: American Mathematical Soc.

ISBN: 1470422476

Category: Mathematical physics

Page: 289

View: 8169

DOWNLOAD NOW »

This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.

Geometry of Moduli Spaces and Representation Theory

Author: Roman Bezrukavnikov,Alexander Braverman,Zhiwei Yun

Publisher: American Mathematical Soc.

ISBN: 1470435748

Category: Algebraic varieties

Page: 436

View: 2131

DOWNLOAD NOW »

This book is based on lectures given at the Graduate Summer School of the 2015 Park City Mathematics Institute program “Geometry of moduli spaces and representation theory”, and is devoted to several interrelated topics in algebraic geometry, topology of algebraic varieties, and representation theory. Geometric representation theory is a young but fast developing research area at the intersection of these subjects. An early profound achievement was the famous conjecture by Kazhdan–Lusztig about characters of highest weight modules over a complex semi-simple Lie algebra, and its subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remarkable features of this proof have inspired much of subsequent development: intricate algebraic data turned out to be encoded in topological invariants of singular geometric spaces, while proving this fact required deep general theorems from algebraic geometry. Another focus of the program was enumerative algebraic geometry. Recent progress showed the role of Lie theoretic structures in problems such as calculation of quantum cohomology, K-theory, etc. Although the motivation and technical background of these constructions is quite different from that of geometric Langlands duality, both theories deal with topological invariants of moduli spaces of maps from a target of complex dimension one. Thus they are at least heuristically related, while several recent works indicate possible strong technical connections. The main goal of this collection of notes is to provide young researchers and experts alike with an introduction to these areas of active research and promote interaction between the two related directions.

Algebraic Groups

The Theory of Group Schemes of Finite Type over a Field

Author: J. S. Milne

Publisher: Cambridge University Press

ISBN: 1316739155

Category: Mathematics

Page: N.A

View: 3037

DOWNLOAD NOW »

Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel–Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.

Lehr- und Wanderjahre eines Mathematikers

Aus dem Französischen von Theresia Übelhör

Author: André Weil

Publisher: Springer-Verlag

ISBN: 3034850476

Category: Science

Page: 212

View: 9702

DOWNLOAD NOW »

Mein Leben, oder zumindest das, was diesen Namen verdient -ein außer gewöhnlich glückliches Leben mit einigen Schicksalsschlägen -erstreckte sich auf die Zeit zwischen dem 6. Mai 1906, dem Tag meiner Geburt, und dem 24. Mai 1986, dem Todestag meiner Frau und Gefährtin Eveline. Wenn auf diesen Seiten, die ihr gewidmet sind, von meiner Frau recht wenig die Rede sein wird, heißt das nicht, daß sie in meinem Leben und in meinen Gedanken einen geringen Platz eingenommen hätte. Sie war im Gegenteil, beinahe vom Tag unserer ersten Begegnung an, so eng damit verwoben, daß von mir oder von ihr zu sprechen ein und dasselbe ist. Ihre Anwesenheit beziehungsweise ihre Abwesenheit bestimmte die Textur meines ganzen Lebens. Was könnte ich anderes dazu sagen, als daß unsere Ehe eine von jenen war, die La Rochefoucauld Lügen strafen? »Fulsere vere candidi mihi soles . . . . « Ebenso wird meine Schwester kaum erwähnt werden. Es ist schon lange her, daß ich meine Erinnerungen an sie Simone Petrement mitgeteilt habe, die sie in ihre gute Biographie La vie de Simone Weil einfließen ließ, wo man viele Einzelheiten über unsere gemeinsame Kindheit erfahren kann, und es wäre unnötig, dies hier zu wiederholen. Als Kinder waren wir unzertrennlich, aber ich war der große Bruder und sie die kleine Schwester. Später waren wir selten zusammen, und meist sprachen wir in scherzhaftem Ton miteinander, denn sie hatte ein fröhliches und humorvolles Naturell, wie alle, die sie kannten, bestätigt haben.

Grundzüge der Mengenlehre

Author: Felix Hausdorff

Publisher: American Mathematical Soc.

ISBN: 9780828400619

Category: Mathematics

Page: 476

View: 4493

DOWNLOAD NOW »

This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.

Eindeutige Analytische Funktionen

Author: Rolf Nevanlinna

Publisher: Springer-Verlag

ISBN: 3662068427

Category: Mathematics

Page: 379

View: 739

DOWNLOAD NOW »

Die eindeutigen analytischen Funktionen können von verschiedenen Gesichtspunkten aus untersucht werden. Die in der vorliegenden Arbeit zur Darstellung gelangenden Fragen gruppieren sich um ein großes Hauptproblem. Einige allgemeine Bemerkungen über diese zentrale Fragestellung sollen hier vorausgeschickt werden. Wir denken uns ein gegebenes analytisches Funktionselement un beschränkt fortgesetzt. Angenommen, daß die so entstehende analytische Funktion w = w (z) eindeutig ist, existiert ein schlichtes Gebiet G mit z nachstehenden Eigenschaften. 1. Jedem inneren Punkt z von G entspricht ein und nur ein Element z von rationalem Charakter der Funktion w(z). 2. Jeder Randpunkt z* von G ist eine wesentliche Singularität z von w(z). Falls G die ganze geschlossene Ebene umfaßt (elliptischer Fall), z so ist w (z) eine rationale Funktion. Schließt man diesen einfachsten Sonderfall aus, so hat man zwei Fälle zu unterscheiden, je nachdem G z einfach oder mehrfach rusammenhängend ist. Wir beschränken uns auf den erstgenannten Fa}! und haben dann weitere zwei Möglichkeiten zu berücksichtigen: die Berandung r von G ist entweder ein Punkt z z (parabolischer Fall) oder ein Kontinuum (hyperbolischer Fall). Das Gebiet G wird durch die Funktion w = w (z) auf eine über der z w-Ebene ausgebreitete RIEMANNSche Fläche G .konform abgebildet. to Die Umkehrfunktion z = z(w) von w(z) ist eine auf dieser Fläche G to eindeutige und wegen der Eindeutigkeit von w (z) einwertige Funktion, d. h. den Mittelpunkten von zwei verschiedenen Elementen von z(w) sind stets zwei verschiedene Punkte z zugeordnet.

Kulte, Mythen und Gelehrte

Anthropologie der Antike seit 1800

Author: Renate Schlesier

Publisher: S. Fischer Verlag

ISBN: 3105601236

Category: Social Science

Page: 361

View: 4264

DOWNLOAD NOW »

Wer die Geschichte einer Wissenschaft verstehen will, tut gut daran, die bahnbrechenden Fragestellungen und ihren – offenen oder latenten – Wettbewerb ernst zu nehmen – in ihnen verkörpern sich die Bewegung des Wissens und der Kampf der Begriffe. Renate Schlesier spürt dieser Bewegung und diesem Kampf nach – in und an den Werken großer Gelehrter, die die Religion, die Mythen, Rituale und Kulte der Antike erforscht und ihre Bedeutung interpretiert haben: Karl Otfried Müller, Otto Jahn, Jane Ellen Harrison, Eduard Meyer, Claude Lévi-Strauss, Jean-Pierre Vernant u. a. m. Es entsteht so ein imponierendes Panorama anthropologischer Denkstile und Verfahrensweisen: Wissenschaftlergeschichte als Wissenschaftsgeschichte. (Dieser Text bezieht sich auf eine frühere Ausgabe.)

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 1534

DOWNLOAD NOW »

Rational Points

Seminar Bonn/Wuppertal 1983/84 A Publication of the Max-Planck-Institut für Mathematik, Bonn

Author: Gerd Faltings

Publisher: Springer-Verlag

ISBN: 3322839184

Category: Mathematics

Page: 268

View: 4312

DOWNLOAD NOW »

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 3761

DOWNLOAD NOW »

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Mathematik und Technologie

Author: Christiane Rousseau,Yvan Saint-Aubin

Publisher: Springer-Verlag

ISBN: 3642300928

Category: Mathematics

Page: 609

View: 4092

DOWNLOAD NOW »

Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Das lebendige Theorem

Author: Cédric Villani

Publisher: S. Fischer Verlag

ISBN: 3104025665

Category: Mathematics

Page: 304

View: 1853

DOWNLOAD NOW »

Im Kopf eines Genies – der Bericht von einem mathematischen Abenteuer und der Roman eines sehr erfolgreichen Forschers Cédric Villani gilt als Kandidat für die begehrte Fields-Medaille, eine Art Nobelpreis für Mathematiker. Sie wird aber nur alle vier Jahre vergeben, und man muss unter 40 sein. Er hat also nur eine Chance. Unmöglich! Unmöglich? Fieberhaft macht er sich an die Arbeit. Jetzt erzählt er seine Geschichte, und ihm gelingt das Unglaubliche: Wir werden direkte Zeugen der Denkprozesse eines Mathematikers, und das, ohne die dazugehörigen Formeln verstehen zu müssen. Ein Buch, so einzigartig wie sein Autor.