Computability and Randomness

Author: André Nies

Publisher: OUP Oxford

ISBN: 0191627887

Category: Philosophy

Page: 456

View: 9407


The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.

Probability And Random Number: A First Guide To Randomness

Author: Sugita Hiroshi

Publisher: World Scientific

ISBN: 981322827X

Category: Mathematics

Page: 140

View: 3827


This is a book of elementary probability theory that includes a chapter on algorithmic randomness. It rigorously presents definitions and theorems in computation theory, and explains the meanings of the theorems by comparing them with mechanisms of the computer, which is very effective in the current computer age. Random number topics have not been treated by any books on probability theory, only some books on computation theory. However, the notion of random number is necessary for understanding the essential relation between probability and randomness. The field of probability has changed very much, thus this book will make and leave a big impact even to expert probabilists. Readers from applied sciences will benefit from this book because it presents a very proper foundation of the Monte Carlo method with practical solutions, keeping the technical level no higher than 1st year university calculus. Contents: Mathematics of Coin TossingMathematical ModelRandom NumberLimit TheoremMonte Carlo MethodInfinite coin TossesRandom Number: Recursive FunctionKolmogorov Complexity and Random NumberLimit Theorem: Bernoulli's TheoremLaw of Large NumbersDe Moivre–Laplace's TheoremCentral Limit TheoremMathematical StatisticsMonte Carlo Method: Monte Carlo Method as GamblingPseudorandom GeneratorMonte Carlo IntegrationFrom the Viewpoint of Mathematical StatisticsAppendices: Symbols and TermsBinary Numeral SystemLimit of Sequence and FunctionLimits of Exponential Function and LogarithmC Language Program Readership: First year university students to professionals. Keywords: Probability;Probability Theory;Randomness;Random Number;Pseudorandom Number;Monte Carlo Method;Monte Carlo IntegrationReview: Key Features: This is the first book that presents both probability theory and algorithmic randomness for from 1st year university students to experts. It is technically easy but worth reading for experts as wellThis book presents basic limit theorems with proofs that are not seen in usual probability textbooks; for readers should learn that a good solution is not always uniqueThis book rigorously treats the Monte Carlo method. In particular, it presents the random Weyl sampling, which produces pseudorandom numbers for the Monte Carlo integration that act complete substitutes for random numbers

Computability Theory

Author: Rebecca Weber

Publisher: American Mathematical Soc.

ISBN: 082187392X

Category: Mathematics

Page: 203

View: 320


What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.

Evolving Computability

11th Conference on Computability in Europe, CiE 2015, Bucharest, Romania, June 29-July 3, 2015. Proceedings

Author: Arnold Beckmann,Victor Mitrana,Mariya Soskova

Publisher: Springer

ISBN: 3319200283

Category: Computers

Page: 363

View: 8768


This book constitutes the refereed proceedings of the 11th Conference on Computability in Europe, CiE 2015, held in Bucharest, Romania, in June/July 2015. The 26 revised papers presented were carefully reviewed and selected from 64 submissions and included together with 10 invited papers in this proceedings. The conference CiE 2015 has six special sessions: two sessions, Representing Streams and Reverse Mathematics, were introduced for the first time in the conference series. In addition to this, new developments in areas frequently covered in the CiE conference series were addressed in the further special sessions on Automata, Logic and Infinite Games; Bio-inspired Computation; Classical Computability Theory; as well as History and Philosophy of Computing.

The Foundations of Computability Theory

Author: Borut Robič

Publisher: Springer

ISBN: 3662448084

Category: Computers

Page: 331

View: 1834


This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.

Der Turing Omnibus

Eine Reise durch die Informatik mit 66 Stationen

Author: A.K. Dewdney

Publisher: Springer-Verlag

ISBN: 3642788726

Category: Computers

Page: 496

View: 1551


Der Turing Omnibus macht in 66 exzellent geschriebenen Beiträgen Station bei den interessantesten Themen aus der Informatik, der Computertechnologie und ihren Anwendungen.

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 7504


Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 3658022620

Category: Mathematics

Page: 214

View: 6918


Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 8143


Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

Wahrscheinlichkeit, Statistik und Wahrheit

Einführung in d. neue Wahrscheinlichkeitslehre u. ihre Anwendung

Author: Richard Von Mises

Publisher: Springer-Verlag

ISBN: 3662418630

Category: Mathematics

Page: 284

View: 4544


Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.