Calculus Problems

Author: Marco Baronti,Filippo De Mari,Robertus van der Putten,Irene Venturi

Publisher: Springer

ISBN: 3319154281

Category: Mathematics

Page: 366

View: 2845

DOWNLOAD NOW »

This book, intended as a practical working guide for calculus students, includes 450 exercises. It is designed for undergraduate students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, and will greatly benefit anyone seeking a problem-solving approach to calculus. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-world applicability.

Discrete Calculus

Methods for Counting

Author: Carlo Mariconda,Alberto Tonolo

Publisher: Springer

ISBN: 3319030388

Category: Mathematics

Page: 665

View: 2720

DOWNLOAD NOW »

This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet user-friendly approach. This is particularly useful in combinatorics, a field where, all too often, exercises are solved by means of ad hoc tricks. The book contains more than 400 examples and about 300 problems, and the reader will be able to find the proof of every result. To further assist students and teachers, important matters and comments are highlighted, and parts that can be omitted, at least during a first and perhaps second reading, are identified.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 5749

DOWNLOAD NOW »

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Mathematische Physik: Klassische Mechanik

Author: Andreas Knauf

Publisher: Springer-Verlag

ISBN: 3662557762

Category: Science

Page: 652

View: 2920

DOWNLOAD NOW »

Als Grenztheorie der Quantenmechanik besitzt die klassische Dynamik einen großen Formenreichtum – vom gut berechenbaren bis zum chaotischen Verhalten. Ausgehend von interessanten Beispielen wird in dem Band nicht nur eine gelungene Auswahl grundlegender Themen vermittelt, sondern auch der Einstieg in viele aktuelle Forschungsgebiete im Bereich der klassischen Mechanik. Didaktisch geschickt aufgebaut und mit hilfreichen Anhängen versehen, werden lediglich Kenntnisse der Grundvorlesungen in Mathematik vorausgesetzt. Mit über 100 Aufgaben und Lösungen.

Maß und Wahrscheinlichkeit

Author: Klaus D. Schmidt

Publisher: Springer-Verlag

ISBN: 3642210260

Category: Mathematics

Page: 484

View: 9046

DOWNLOAD NOW »

Die Wahrscheinlichkeitstheorie hat durch neue Anwendungen in der Wirtschaft auch in der Lehre an Bedeutung gewonnen. Sie beruht auf der Maß- und Integrationstheorie – gleichzeitig eine der Grundlagen der Funktionalanalysis. Das Buch bietet eine Einführung in die Wahrscheinlichkeitstheorie. Dabei wird die systematische Darstellung der klassischen Themen durch Beispiele und Aufgaben ergänzt, so dass die Theorie, aber auch Anwendungen vertieft werden können. Der Stoff wurde so aufbereitet, dass er ohne Vorkenntnisse erarbeitet werden kann.

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 897

DOWNLOAD NOW »

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Wissenschaftliches Rechnen mit MATLAB

Author: Alfio Quarteroni,Fausto Saleri

Publisher: Springer-Verlag

ISBN: 3540293078

Category: Mathematics

Page: 269

View: 2141

DOWNLOAD NOW »

Aus den Rezensionen der englischen Auflage: Dieses Lehrbuch ist eine Einführung in das Wissenschaftliche Rechnen und diskutiert Algorithmen und deren mathematischen Hintergrund. Angesprochen werden im Detail nichtlineare Gleichungen, Approximationsverfahren, numerische Integration und Differentiation, numerische Lineare Algebra, gewöhnliche Differentialgleichungen und Randwertprobleme. Zu den einzelnen Themen werden viele Beispiele und Übungsaufgaben sowie deren Lösung präsentiert, die durchweg in MATLAB formuliert sind. Der Leser findet daher nicht nur die graue Theorie sondern auch deren Umsetzung in numerischen, in MATLAB formulierten Code. MATLAB select 2003, Issue 2, p. 50. [Die Autoren] haben ein ausgezeichnetes Werk vorgelegt, das MATLAB vorstellt und eine sehr nützliche Sammlung von MATLAB Funktionen für die Lösung fortgeschrittener mathematischer und naturwissenschaftlicher Probleme bietet. [...] Die Präsentation des Stoffs ist durchgängig gut und leicht verständlich und beinhaltet Lösungen für die Übungen am Ende jedes Kapitels. Als exzellenter Neuzugang für Universitätsbibliotheken- und Buchhandlungen wird dieses Buch sowohl beim Selbststudium als auch als Ergänzung zu anderen MATLAB-basierten Büchern von großem Nutzen sein. Alles in allem: Sehr empfehlenswert. Für Studenten im Erstsemester wie für Experten gleichermassen. S.T. Karris, University of California, Berkeley, Choice 2003.

Mathematical Analysis I

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127721

Category: Mathematics

Page: 492

View: 6952

DOWNLOAD NOW »

The purpose of the volume is to provide a support for a first course in Mathematics. The contents are organised to appeal especially to Engineering, Physics and Computer Science students, all areas in which mathematical tools play a crucial role. Basic notions and methods of differential and integral calculus for functions of one real variable are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The layout has a specifically-designed modular nature, allowing the instructor to make flexible didactical choices when planning an introductory lecture course. The book may in fact be employed at three levels of depth. At the elementary level the student is supposed to grasp the very essential ideas and familiarise with the corresponding key techniques. Proofs to the main results befit the intermediate level, together with several remarks and complementary notes enhancing the treatise. The last, and farthest-reaching, level requires the additional study of the material contained in the appendices, which enable the strongly motivated reader to explore further into the subject. Definitions and properties are furnished with substantial examples to stimulate the learning process. Over 350 solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a first course of Mathematics.

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 3658022620

Category: Mathematics

Page: 214

View: 9765

DOWNLOAD NOW »

Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

Numerische lineare Algebra

Eine konzise Einführung mit MATLAB und Julia

Author: Folkmar Bornemann

Publisher: Springer-Verlag

ISBN: 3658128844

Category: Mathematics

Page: 145

View: 5879

DOWNLOAD NOW »

Dieses Buch führt anhand grundlegender Problemstellungen der linearen Algebra in das algorithmisch-numerische Denken ein. Die Beschränkung auf die lineare Algebra sichert dabei eine stärkere thematische Kohärenz als sie sonst in einführenden Vorlesungen zur Numerik zu finden ist. Die Darstellung betont die Zweckmäßigkeit von Matrixpartitionierungen gegenüber einer komponentenweisen Betrachtung, was sich nicht nur in einer übersichtlicheren Notation und kürzeren Algorithmen auszahlt, sondern angesichts moderner Computerarchitekturen auch zu signifikanten Laufzeitgewinnen führt. Die Algorithmen und begleitenden numerischen Beispiele werden in der Programmierumgebung MATLAB angegeben, zusätzlich aber in einem Anhang auch in der zukunftsweisenden, frei zugänglichen Programmiersprache Julia. Das vorliegende Buch eignet sich für eine zweistündige Vorlesung über numerische lineare Algebra ab dem zweiten Semester des Bachelorstudiengangs Mathematik.

Mathematical Analysis II

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127578

Category: Mathematics

Page: 559

View: 3836

DOWNLOAD NOW »

The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

Perlen der Mathematik

20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen

Author: Claudi Alsina,Roger B. Nelsen

Publisher: Springer-Verlag

ISBN: 3662454610

Category: Mathematics

Page: 317

View: 5181

DOWNLOAD NOW »

Dieses Buch handelt von 20 geometrischen Figuren (Icons), die eine wichtige Rolle bei der Veranschaulichung mathematischer Beweise spielen. Alsina und Nelsen untersuchen die Mathematik, die hinter diesen Figuren steckt und die sich aus ihnen ableiten lässt. Jedem in diesem Buch behandelten Icons ist ein eigenes Kapitel gewidmet, in dem sein Alltagsbezug, seine wesentlichen mathematischen Eigenschaften sowie seine Bedeutung für visuelle Beweise vieler mathematischer Sätze betont werden. Diese Sätze umfassen unter anderem auch klassische Ergebnisse aus der ebenen Geometrie, Eigenschaften der natürlichen Zahlen, Mittelwerte und Ungleichungen, Beziehungen zwischen Winkelfunktionen, Sätze aus der Differenzial- und Integralrechnung sowie Rätsel aus dem Bereich der Unterhaltungsmathematik. Darüber hinaus enthält jedes Kapitel eine Auswahl an Aufgaben, anhand derer die Leser weitere Eigenschaften und Anwendungen der Diagramme erkunden können. Das Buch ist für alle geschrieben, die Freude an der Mathematik haben; Lehrkräfte und Dozenten der Mathematik werden in diesem Buch sehr nützliche Beispiele für Problemlösungen sowie umfangreiches Unterrichts- und Seminarmaterial zu Beweisen und mathematischer Argumentation finden.

Optimization and Approximation

Author: Pablo Pedregal

Publisher: Springer

ISBN: 3319648438

Category: Mathematics

Page: 254

View: 5276

DOWNLOAD NOW »

This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 6351

DOWNLOAD NOW »

Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Vito Volterra

Author: Angelo Guerraggio,Giovanni Paoloni

Publisher: Springer-Verlag

ISBN: 3034800819

Category: Mathematics

Page: 230

View: 2543

DOWNLOAD NOW »

Der Mathematiker Vito Volterra (1860 – 1940) war nicht nur ein großer Mathematiker, sondern auch ein guter Wissenschaftsorganisator. Über Jahrzehnte galt er als der bedeutendste Repräsentant der Wissenschaft in Italien. Die Autoren rekonstruieren seine wichtigsten Beiträge zur Wissenschaft und zur Entwicklung der wissenschaftlichen Institutionen in Italien und der Welt: von der Entwicklung der Funktionalanalysis über die Untersuchung der Populationsdynamik bis zu seiner Lehrtätigkeit und der Gründung des staatlichen italienischen Forschungsrates.

Teilchen und Kerne

Eine Einführung in die physikalischen Konzepte

Author: Bogdan Povh,Klaus Rith,Christoph Scholz,Frank Zetsche

Publisher: Springer-Verlag

ISBN: 3642974759

Category: Science

Page: 316

View: 5318

DOWNLOAD NOW »

Die Grundidee dieses einführenden Lehrbuchs besteht darin, eine einheitliche Darstellung von Kern- und Teilchenphysik aus experimenteller Sicht zu geben. Die Reduktion der komplex aufgebauten Materie der Atomkerne und Nukleonen auf wenige Grundbausteine und Wechselwirkungen ist seine erste Botschaft. Die Botschaft des zweiten Teils, der den Aufbau des Quarks über die Nukleonen zu den Kernen beschreibt, ist, daß Komplexität, die aus der Vielkörper-Wechselwirkung entsteht, immer mehr die Gesetzmäßigkeiten der zusammengesetzten Systeme bestimmt. Entstanden aus Vorlesungen an der Heidelberger Universität eignet sich dieses straff und klar abgefaßte, durch Übungsaufgaben ergänzte Lehrbuch gut als Begleittext zu einführenden Kursusvorlesungen an Hochschulen.