Applied Multivariate Data Analysis

Author: Brian S. Everitt,Graham Dunn

Publisher: Oxford University Press

ISBN: 9780340741221

Category: Business & Economics

Page: 342

View: 5902

DOWNLOAD NOW »

Multivariate analysis plays an important role in the understanding of complex data sets requiring simultaneous examination of all variables. Breaking through the apparent disorder of the information, it provides the means for both describing and exploring data, aiming to extract the underlying patterns and structure. This intermediate-level textbook introduces the reader to the variety of methods by which multivariate statistical analysis may be undertaken. Now in its 2nd edition, 'Applied Multivariate Data Analysis' has been fully expanded and updated, including major chapter revisions as well as new sections on neural networks and random effects models for longitudinal data. Maintaining the easy-going style of the first edition, the authors provide clear explanations of each technique, as well as supporting figures and examples, and minimal technical jargon. With extensive exercises following every chapter, 'Applied Multivariate Data Analysis' is a valuable resource for students on applied statistics courses and applied researchers in many disciplines.

Applied Multivariate Statistical Analysis

Author: Richard Arnold Johnson

Publisher: N.A

ISBN: 9780138341947

Category: Mathematics

Page: 816

View: 7624

DOWNLOAD NOW »

This market leading text provides experimental scientists in a wide variety of disciplines with a readable introduction to the statistical analysis of multivariate observations. Its overarching goal is to provide readers with the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. The Fourth Edition has been revised to take greater advantage of graphical displays of multivariate data and of statistical software programs that facilitate the analysis of complex data. *NEW - Graphical displays of multivariate data moved from Chapter 12 to chapter 1 and many new illustrations and graphics have been added to provide a more visual approach to the subject. *NEW - discussions of important topics including: - Detecting Outliers and Data Cleaning in Chapter 4.- Multivariate Quality Control in Chapter 5. - Monitoring Quality with Principal Components in Chapter 8.- Correspondence Analysis, Biplots, and Procrustes Analysis in Chapter 12. *NEW - Expanded coverage of the following topics: Generalized variance, Assessing normality and transformations to normality, Repeated measures designs, Model checking and other aspects of regre

Applied Multivariate Statistical Analysis

Author: Wolfgang Karl Härdle,Léopold Simar

Publisher: Springer Science & Business Media

ISBN: 3662058022

Category: Mathematics

Page: 486

View: 9742

DOWNLOAD NOW »

A state of the art presentation of the tools and concepts of multivariate data analysis with a strong focus on applications. The first part is devoted to graphical techniques describing the distributions of the involved variables. The second part deals with multivariate random variables and presents distributions, estimators and tests for various practical situations. The last part covers mulivariate techniques and introduces the reader into the wide variety of tools for multivariate data analysis. The text presents a wide range of examples and 228 exercises.

Applied Multivariate Statistical Analysis

Author: Wolfgang Härdle,Léopold Simar

Publisher: Springer Science & Business Media

ISBN: 3540722432

Category: Business & Economics

Page: 458

View: 3413

DOWNLOAD NOW »

With a wealth of examples and exercises, this is a brand new edition of a classic work on multivariate data analysis. A key advantage of the work is its accessibility as it presents tools and concepts in a way that is understandable for non-mathematicians.

Applied Multivariate Data Analysis

Volume II: Categorical and Multivariate Methods

Author: J.D. Jobson

Publisher: Springer Science & Business Media

ISBN: 1461209218

Category: Mathematics

Page: 732

View: 4469

DOWNLOAD NOW »

A Second Course in Statistics The past decade has seen a tremendous increase in the use of statistical data analysis and in the availability of both computers and statistical software. Business and government professionals, as well as academic researchers, are now regularly employing techniques that go far beyond the standard two-semester, introductory course in statistics. Even though for this group of users shorl courses in various specialized topics are often available, there is a need to improve the statistics training of future users of statistics while they are still at colleges and universities. In addition, there is a need for a survey reference text for the many practitioners who cannot obtain specialized courses. With the exception of the statistics major, most university students do not have sufficient time in their programs to enroll in a variety of specialized one-semester courses, such as data analysis, linear models, experimental de sign, multivariate methods, contingency tables, logistic regression, and so on. There is a need for a second survey course that covers a wide variety of these techniques in an integrated fashion. It is also important that this sec ond course combine an overview of theory with an opportunity to practice, including the use of statistical software and the interpretation of results obtained from real däta.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 3334

DOWNLOAD NOW »

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Applied Multivariate Statistical Analysis: Pearson New International Edition

Author: Richard A. Johnson,Dean W. Wichern

Publisher: Pearson Higher Ed

ISBN: 1292037571

Category: Psychology

Page: 776

View: 1479

DOWNLOAD NOW »

For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

Applied Multivariate Statistical Analysis

Author: Richard A. Johnson,Richard Arnold Johnson,Dean W. Wichern

Publisher: N.A

ISBN: N.A

Category: Analyse multivariée

Page: 642

View: 8679

DOWNLOAD NOW »

Explores the statistical methods for describing and analyzing multivariate data. It's goal is to provide readers with the knowledge necessary to make proper interpretations, and select appropriate techniques for analyzing multivariate data Coverage includes: Detecting Outliers and Data Cleaning; Multivariate Quality Control; Monitoring Quality with Principal Components; and Correspondence Analysis, Biplots, and Procrustes Analysis.

Applied Multivariate Data Analysis

Regression and Experimental Design

Author: John Jobson

Publisher: Springer

ISBN: 0387976604

Category: Business & Economics

Page: 622

View: 963

DOWNLOAD NOW »

An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.

Applied Multivariate Analysis

Author: Neil H. Timm

Publisher: Springer Science & Business Media

ISBN: 0387953477

Category: Mathematics

Page: 695

View: 4994

DOWNLOAD NOW »

This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.

Topics in Applied Multivariate Analysis

Author: D. M. Hawkins

Publisher: Cambridge University Press

ISBN: 9780521243681

Category: Mathematics

Page: 362

View: 2827

DOWNLOAD NOW »

Multivariate methods are employed widely in the analysis of experimental data but are poorly understood by those users who are not statisticians. This is because of the wide divergence between the theory and practice of multivariate methods. This book provides concise yet thorough surveys of developments in multivariate statistical analysis and gives statistically sound coverage of the subject. The contributors are all experienced in the theory and practice of multivariate methods and their aim has been to emphasize the major features from the point of view of applicability and to indicate the limitations and conditions of the techniques. Professional statisticians wanting to improve their background in applicable methods, users of high-level statistical methods wanting to improve their background in fundamentals, and graduate students of statistics will all find this volume of value and use.

An Introduction to Applied Multivariate Analysis with R

Author: Brian Everitt,Torsten Hothorn

Publisher: Springer Science & Business Media

ISBN: 9781441996503

Category: Mathematics

Page: 274

View: 7195

DOWNLOAD NOW »

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Applied Multivariate Statistical Concepts

Author: Debbie L. Hahs-Vaughn

Publisher: Taylor & Francis

ISBN: 1317811372

Category: Psychology

Page: 648

View: 9144

DOWNLOAD NOW »

More comprehensive than other texts, this new book covers the classic and cutting edge multivariate techniques used in today’s research. Ideal for courses on multivariate statistics/analysis/design, advanced statistics or quantitative techniques taught in psychology, education, sociology, and business, the book also appeals to researchers with no training in multivariate methods. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps reader’s master key concepts so they can implement and interpret results generated by today’s sophisticated software. Annotated screenshots from SPSS and other packages are integrated throughout. Designed for course flexibility, after the first 4 chapters, instructors can use chapters in any sequence or combination to fit the needs of their students. Each chapter includes a ‘mathematical snapshot’ that highlights the technical components of each procedure, so only the most crucial equations are included. Highlights include: -Outlines, key concepts, and vignettes related to key concepts preview what’s to come in each chapter -Examples using real data from education, psychology, and other social sciences illustrate key concepts -Extensive coverage of assumptions including tables, the effects of their violation, and how to test for each technique -Conceptual, computational, and interpretative problems mirror the real-world problems students encounter in their studies and careers -A focus on data screening and power analysis with attention on the special needs of each particular method -Instructions for using SPSS via screenshots and annotated output along with HLM, Mplus, LISREL, and G*Power where appropriate, to demonstrate how to interpret results -Templates for writing research questions and APA-style write-ups of results which serve as models -Propensity score analysis chapter that demonstrates the use of this increasingly popular technique -A review of matrix algebra for those who want an introduction (prerequisites include an introduction to factorial ANOVA, ANCOVA, and simple linear regression, but knowledge of matrix algebra is not assumed) -www.routledge.com/9780415842365 provides the text’s datasets preformatted for use in SPSS and other statistical packages for readers, as well as answers to all chapter problems, Power Points, and test items for instructors

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 374

DOWNLOAD NOW »

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

An Introduction to Applied Multivariate Analysis

Author: Tenko Raykov,George A. Marcoulides

Publisher: Routledge

ISBN: 1136676007

Category: Business & Economics

Page: 496

View: 445

DOWNLOAD NOW »

This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies between the already familiar univariate statistics and multivariate statistics are emphasized throughout. The authors examine in detail how each multivariate technique can be implemented using SPSS and SAS and Mplus in the book’s later chapters. Important assumptions are discussed along the way along with tips for how to deal with pitfalls the reader may encounter. Mathematical formulas are used only in their definitional meaning rather than as elements of formal proofs. A book specific website - www.psypress.com/applied-multivariate-analysis - provides files with all of the data used in the text so readers can replicate the results. The Appendix explains the data files and its variables. The software code (for SAS and Mplus) and the menu option selections for SPSS are also discussed in the book. The book is distinguished by its use of latent variable modeling to address multivariate questions specific to behavioral and social scientists including missing data analysis and longitudinal data modeling. Ideal for graduate and advanced undergraduate students in the behavioral, social, and educational sciences, this book will also appeal to researchers in these disciplines who have limited familiarity with multivariate statistics. Recommended prerequisites include an introductory statistics course with exposure to regression analysis and some familiarity with SPSS and SAS.

Applied Multivariate Methods for Data Analysts

Author: Dallas E. Johnson

Publisher: Duxbury Resource Center

ISBN: 9780534237967

Category: Mathematics

Page: 567

View: 9378

DOWNLOAD NOW »

Statisticians and nonstatisticians alike will appreciate this modern and comprehensive new book on multivariate statistical methods that utilizes statistical computing packages throughout. Author Dallas Johnson uses real-life examples and explains the "when to," "why to," and "how to" of numerous multivariate methods, stressing the importance and practical application of each. Technical details are kept to a minimum, making the book accessible to readers.

Applied Multivariate Statistics for the Social Sciences

Author: James Paul Stevens

Publisher: Taylor & Francis

ISBN: 0805859012

Category: Social Science

Page: 651

View: 1727

DOWNLOAD NOW »

This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.

Applied Multivariate Statistical Analysis (Classic Version)

Author: Richard A. Johnson,Dean W. Wichern

Publisher: Pearson

ISBN: 9780134995397

Category: Multivariate analysis

Page: 808

View: 695

DOWNLOAD NOW »

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

Systemtheorie ohne Ballast

Zeitdiskrete LTI-Systeme

Author: Peter Vogel

Publisher: Springer-Verlag

ISBN: 3642160468

Category: Technology & Engineering

Page: 348

View: 2646

DOWNLOAD NOW »

Der Autor liefert eine ebenso ausführliche wie detailgenaue Einführung in die Systemtheorie. Dabei behandelt er die Konzepte „Signal“ und „System“ grundlegend und konzentriert sich auf lineare, zeitinvariante Systeme für zeitdiskrete Signale – sogenannte LTI-Systeme. Behandelt werden elementare Themen wie Systemeigenschaften, Faltung, Fourier- und z-Transformation sowie der Filterentwurf. Dabei versucht der Autor stets, die Grenzen des Realisierbaren offen zu legen und riskiert zudem einen Blick über diese Grenzen hinaus.