Applied Multivariate Data Analysis

Author: Brian S. Everitt,Graham Dunn

Publisher: Wiley

ISBN: 9780470711170

Category: Mathematics

Page: 354

View: 5214

DOWNLOAD NOW »

Multivariate analysis plays an important role in the understanding of complex data sets requiring simultaneous examination of all variables. Breaking through the apparent disorder of the information, it provides the means for both describing and exploring data, aiming to extract the underlying patterns and structure. This intermediate-level textbook introduces the reader to the variety of methods by which multivariate statistical analysis may be undertaken. Now in its 2nd edition, 'Applied Multivariate Data Analysis' has been fully expanded and updated, including major chapter revisions as well as new sections on neural networks and random effects models for longitudinal data. Maintaining the easy-going style of the first edition, the authors provide clear explanations of each technique, as well as supporting figures and examples, and minimal technical jargon. With extensive exercises following every chapter, 'Applied Multivariate Data Analysis' is a valuable resource for students on applied statistics courses and applied researchers in many disciplines.

Applied Multivariate Statistical Analysis

Author: Wolfgang Karl Härdle,Léopold Simar

Publisher: Springer

ISBN: 3662451719

Category: Business & Economics

Page: 580

View: 9396

DOWNLOAD NOW »

Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. All chapters include practical exercises that highlight applications in different multivariate data analysis fields. All of the examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg.

Applied Multivariate Data Analysis

Volume II: Categorical and Multivariate Methods

Author: J.D. Jobson

Publisher: Springer Science & Business Media

ISBN: 1461209218

Category: Mathematics

Page: 732

View: 8204

DOWNLOAD NOW »

A Second Course in Statistics The past decade has seen a tremendous increase in the use of statistical data analysis and in the availability of both computers and statistical software. Business and government professionals, as well as academic researchers, are now regularly employing techniques that go far beyond the standard two-semester, introductory course in statistics. Even though for this group of users shorl courses in various specialized topics are often available, there is a need to improve the statistics training of future users of statistics while they are still at colleges and universities. In addition, there is a need for a survey reference text for the many practitioners who cannot obtain specialized courses. With the exception of the statistics major, most university students do not have sufficient time in their programs to enroll in a variety of specialized one-semester courses, such as data analysis, linear models, experimental de sign, multivariate methods, contingency tables, logistic regression, and so on. There is a need for a second survey course that covers a wide variety of these techniques in an integrated fashion. It is also important that this sec ond course combine an overview of theory with an opportunity to practice, including the use of statistical software and the interpretation of results obtained from real däta.

Applied Multivariate Analysis

Author: Neil H. Timm

Publisher: Springer Science & Business Media

ISBN: 0387953477

Category: Mathematics

Page: 695

View: 3860

DOWNLOAD NOW »

This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.

Applied Multivariate Statistical Analysis

Author: Richard Arnold Johnson,Dean W. Wichern

Publisher: N.A

ISBN: 9781292024943

Category: Mathematical analysis

Page: 776

View: 3067

DOWNLOAD NOW »

This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples. Offers an abundance of examples and exercises based on real data. Appropriate for experimental scientists in a variety of disciplines.

Applied Multivariate Data Analysis

Regression and Experimental Design

Author: John Jobson

Publisher: Springer

ISBN: 0387976604

Category: Business & Economics

Page: 622

View: 6356

DOWNLOAD NOW »

An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.

Applied Multivariate Statistical Analysis

Author: Richard Arnold Johnson,Dean W. Wichern

Publisher: N.A

ISBN: 9780130925534

Category: Mathematics

Page: 767

View: 8107

DOWNLOAD NOW »

& This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples. & Offers an abundance of examples and exercises based on real data.& Appropriate for experimental scientists in a variety of disciplines.

Applied Multivariate Statistical Concepts

Author: Debbie L. Hahs-Vaughn

Publisher: Taylor & Francis

ISBN: 1317811372

Category: Psychology

Page: 648

View: 8601

DOWNLOAD NOW »

More comprehensive than other texts, this new book covers the classic and cutting edge multivariate techniques used in today’s research. Ideal for courses on multivariate statistics/analysis/design, advanced statistics or quantitative techniques taught in psychology, education, sociology, and business, the book also appeals to researchers with no training in multivariate methods. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps reader’s master key concepts so they can implement and interpret results generated by today’s sophisticated software. Annotated screenshots from SPSS and other packages are integrated throughout. Designed for course flexibility, after the first 4 chapters, instructors can use chapters in any sequence or combination to fit the needs of their students. Each chapter includes a ‘mathematical snapshot’ that highlights the technical components of each procedure, so only the most crucial equations are included. Highlights include: -Outlines, key concepts, and vignettes related to key concepts preview what’s to come in each chapter -Examples using real data from education, psychology, and other social sciences illustrate key concepts -Extensive coverage of assumptions including tables, the effects of their violation, and how to test for each technique -Conceptual, computational, and interpretative problems mirror the real-world problems students encounter in their studies and careers -A focus on data screening and power analysis with attention on the special needs of each particular method -Instructions for using SPSS via screenshots and annotated output along with HLM, Mplus, LISREL, and G*Power where appropriate, to demonstrate how to interpret results -Templates for writing research questions and APA-style write-ups of results which serve as models -Propensity score analysis chapter that demonstrates the use of this increasingly popular technique -A review of matrix algebra for those who want an introduction (prerequisites include an introduction to factorial ANOVA, ANCOVA, and simple linear regression, but knowledge of matrix algebra is not assumed) -www.routledge.com/9780415842365 provides the text’s datasets preformatted for use in SPSS and other statistical packages for readers, as well as answers to all chapter problems, Power Points, and test items for instructors

Topics in Applied Multivariate Analysis

Author: D. M. Hawkins

Publisher: Cambridge University Press

ISBN: 9780521243681

Category: Mathematics

Page: 362

View: 1497

DOWNLOAD NOW »

Multivariate methods are employed widely in the analysis of experimental data but are poorly understood by those users who are not statisticians. This is because of the wide divergence between the theory and practice of multivariate methods. This book provides concise yet thorough surveys of developments in multivariate statistical analysis and gives statistically sound coverage of the subject. The contributors are all experienced in the theory and practice of multivariate methods and their aim has been to emphasize the major features from the point of view of applicability and to indicate the limitations and conditions of the techniques. Professional statisticians wanting to improve their background in applicable methods, users of high-level statistical methods wanting to improve their background in fundamentals, and graduate students of statistics will all find this volume of value and use.

Applied Multivariate Methods for Data Analysts

Author: Dallas E. Johnson

Publisher: Duxbury Resource Center

ISBN: 9780534237967

Category: Mathematics

Page: 567

View: 6739

DOWNLOAD NOW »

Statisticians and nonstatisticians alike will appreciate this modern and comprehensive new book on multivariate statistical methods that utilizes statistical computing packages throughout. Author Dallas Johnson uses real-life examples and explains the "when to," "why to," and "how to" of numerous multivariate methods, stressing the importance and practical application of each. Technical details are kept to a minimum, making the book accessible to readers.

Applied Multivariate Statistical Analysis (Classic Version)

Author: Richard A. Johnson,Dean W. Wichern

Publisher: Pearson

ISBN: 9780134995397

Category: Multivariate analysis

Page: 804

View: 2953

DOWNLOAD NOW »

For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.

An Introduction to Applied Multivariate Analysis with R

Author: Brian Everitt,Torsten Hothorn

Publisher: Springer Science & Business Media

ISBN: 9781441996503

Category: Mathematics

Page: 274

View: 5219

DOWNLOAD NOW »

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

An Introduction to Applied Multivariate Analysis

Author: Tenko Raykov,George A. Marcoulides

Publisher: Routledge

ISBN: 1136676007

Category: Business & Economics

Page: 496

View: 3562

DOWNLOAD NOW »

This comprehensive text introduces readers to the most commonly used multivariate techniques at an introductory, non-technical level. By focusing on the fundamentals, readers are better prepared for more advanced applied pursuits, particularly on topics that are most critical to the behavioral, social, and educational sciences. Analogies between the already familiar univariate statistics and multivariate statistics are emphasized throughout. The authors examine in detail how each multivariate technique can be implemented using SPSS and SAS and Mplus in the book’s later chapters. Important assumptions are discussed along the way along with tips for how to deal with pitfalls the reader may encounter. Mathematical formulas are used only in their definitional meaning rather than as elements of formal proofs. A book specific website - www.psypress.com/applied-multivariate-analysis - provides files with all of the data used in the text so readers can replicate the results. The Appendix explains the data files and its variables. The software code (for SAS and Mplus) and the menu option selections for SPSS are also discussed in the book. The book is distinguished by its use of latent variable modeling to address multivariate questions specific to behavioral and social scientists including missing data analysis and longitudinal data modeling. Ideal for graduate and advanced undergraduate students in the behavioral, social, and educational sciences, this book will also appeal to researchers in these disciplines who have limited familiarity with multivariate statistics. Recommended prerequisites include an introductory statistics course with exposure to regression analysis and some familiarity with SPSS and SAS.

Handbook of Applied Multivariate Statistics and Mathematical Modeling

Author: Howard E.A. Tinsley,Steven D. Brown

Publisher: Academic Press

ISBN: 9780080533568

Category: Mathematics

Page: 721

View: 3281

DOWNLOAD NOW »

Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.

Applied Multivariate Statistics for the Social Sciences

Author: James Paul Stevens

Publisher: Taylor & Francis

ISBN: 0805859012

Category: Social Science

Page: 651

View: 4558

DOWNLOAD NOW »

This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.

Applied Multivariate Research

Design and Interpretation

Author: Lawrence S. Meyers,Glenn Gamst,A.J. Guarino

Publisher: SAGE Publications

ISBN: 1506329780

Category: Social Science

Page: 1016

View: 6034

DOWNLOAD NOW »

Using a conceptual, non-mathematical approach, the updated Third Edition of Applied Multivariate Research: Design and Interpretation provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter. Authors Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino integrate innovative multicultural topics in examples throughout the book, which include both conceptual and practical coverage of: statistical techniques of data screening; multiple regression; multilevel modeling; exploratory factor analysis; discriminant analysis; structural equation modeling; structural equation modeling invariance; survival analysis; multidimensional scaling; and cluster analysis.

Applied Multivariate Statistics for the Social Sciences

Analyses with SAS and IBM’s SPSS, Sixth Edition

Author: Keenan A. Pituch,James P. Stevens

Publisher: Routledge

ISBN: 1317805917

Category: Psychology

Page: 814

View: 668

DOWNLOAD NOW »

Now in its 6th edition, the authoritative textbook Applied Multivariate Statistics for the Social Sciences, continues to provide advanced students with a practical and conceptual understanding of statistical procedures through examples and data-sets from actual research studies. With the added expertise of co-author Keenan Pituch (University of Texas-Austin), this 6th edition retains many key features of the previous editions, including its breadth and depth of coverage, a review chapter on matrix algebra, applied coverage of MANOVA, and emphasis on statistical power. In this new edition, the authors continue to provide practical guidelines for checking the data, assessing assumptions, interpreting, and reporting the results to help students analyze data from their own research confidently and professionally. Features new to this edition include: NEW chapter on Logistic Regression (Ch. 11) that helps readers understand and use this very flexible and widely used procedure NEW chapter on Multivariate Multilevel Modeling (Ch. 14) that helps readers understand the benefits of this "newer" procedure and how it can be used in conventional and multilevel settings NEW Example Results Section write-ups that illustrate how results should be presented in research papers and journal articles NEW coverage of missing data (Ch. 1) to help students understand and address problems associated with incomplete data Completely re-written chapters on Exploratory Factor Analysis (Ch. 9), Hierarchical Linear Modeling (Ch. 13), and Structural Equation Modeling (Ch. 16) with increased focus on understanding models and interpreting results NEW analysis summaries, inclusion of more syntax explanations, and reduction in the number of SPSS/SAS dialogue boxes to guide students through data analysis in a more streamlined and direct approach Updated syntax to reflect newest versions of IBM SPSS (21) /SAS (9.3) A free online resources site at www.routledge.com/9780415836661 with data sets and syntax from the text, additional data sets, and instructor’s resources (including PowerPoint lecture slides for select chapters, a conversion guide for 5th edition adopters, and answers to exercises). Ideal for advanced graduate-level courses in education, psychology, and other social sciences in which multivariate statistics, advanced statistics, or quantitative techniques courses are taught, this book also appeals to practicing researchers as a valuable reference. Pre-requisites include a course on factorial ANOVA and covariance; however, a working knowledge of matrix algebra is not assumed.

Making Sense of Multivariate Data Analysis

An Intuitive Approach

Author: John Spicer

Publisher: SAGE

ISBN: 9781412904018

Category: Mathematics

Page: 233

View: 6958

DOWNLOAD NOW »

′This book is a helpful guide to reading and understanding multivariate data analysis results in social and psychological research′ _C. Y. Joanne Peng, Indiana University at Bloomington ′This book serves as a resource for readers who want to have an overall view of what encompasses multivariate analyses. The author has discussed some important issues rather philosophically (e.g., theory vs. data analysis). These points are valuable even for readers who have extensive training with multivariate analyses′ _Jenn-Yun Tein, Arizona State University

Applied Multivariate Analysis

Author: Ira H. Bernstein

Publisher: Springer Science & Business Media

ISBN: 146138740X

Category: Business & Economics

Page: 508

View: 1477

DOWNLOAD NOW »

Like most academic authors, my views are a joint product of my teaching and my research. Needless to say, my views reflect the biases that I have acquired. One way to articulate the rationale (and limitations) of my biases is through the preface of a truly great text of a previous era, Cooley and Lohnes (1971, p. v). They draw a distinction between mathematical statisticians whose intel lect gave birth to the field of multivariate analysis, such as Hotelling, Bartlett, and Wilks, and those who chose to "concentrate much of their attention on methods of analyzing data in the sciences and of interpreting the results of statistical analysis . . . . (and) . . . who are more interested in the sciences than in mathematics, among other characteristics. " I find the distinction between individuals who are temperamentally "mathe maticians" (whom philosophy students might call "Platonists") and "scientists" ("Aristotelians") useful as long as it is not pushed to the point where one assumes "mathematicians" completely disdain data and "scientists" are never interested in contributing to the mathematical foundations of their discipline. I certainly feel more comfortable attempting to contribute in the "scientist" rather than the "mathematician" role. As a consequence, this book is primarily written for individuals concerned with data analysis. However, as noted in Chapter 1, true expertise demands familiarity with both traditions.