An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke

Publisher: Springer Science & Business Media

ISBN: 1447163958

Category: Mathematics

Page: 318

View: 1598

DOWNLOAD NOW »

In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and biological modelling requiring techniques for solving initial value problems.

An Introduction to Laplace Transforms and Fourier Series

Author: P.P.G. Dyke

Publisher: Springer Science & Business Media

ISBN: 1447105052

Category: Mathematics

Page: 250

View: 8221

DOWNLOAD NOW »

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke

Publisher: Springer Science & Business Media

ISBN: 9781852330156

Category: Mathematics

Page: 250

View: 1281

DOWNLOAD NOW »

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

Sturm-Liouville Theory and its Applications

Author: M. A. Al-Gwaiz

Publisher: Springer Science & Business Media

ISBN: 1846289718

Category: Mathematics

Page: 264

View: 2173

DOWNLOAD NOW »

Developed from a course taught to senior undergraduates, this book provides a unified introduction to Fourier analysis and special functions based on the Sturm-Liouville theory in L2. The text’s presentation follows a clear, rigorous mathematical style that is highly readable. The author first establishes the basic results of Sturm-Liouville theory and then provides examples and applications to illustrate the theory. The final two chapters, on Fourier and Laplace transformations, demonstrate the use of the Fourier series method for representing functions to integral representations.

Laplace Transform (PMS-6)

Author: David Vernon Widder

Publisher: Princeton University Press

ISBN: 1400876451

Category: Mathematics

Page: 418

View: 1135

DOWNLOAD NOW »

Book 6 in the Princeton Mathematical Series. Originally published in 1941. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Complex Variables and the Laplace Transform for Engineers

Author: Wilbur R. LePage

Publisher: Courier Corporation

ISBN: 0486136442

Category: Technology & Engineering

Page: 512

View: 1413

DOWNLOAD NOW »

Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems.

Fourier Transforms

An Introduction for Engineers

Author: Robert M. Gray,Joseph Goodman

Publisher: Springer Science & Business Media

ISBN: 1461523591

Category: Technology & Engineering

Page: 361

View: 4344

DOWNLOAD NOW »

The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.

Fourier and Laplace Transforms

Author: R. J. Beerends

Publisher: Cambridge University Press

ISBN: 9780521534413

Category: Mathematics

Page: 447

View: 5877

DOWNLOAD NOW »

This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.

Fourier Analysis and Its Applications

Author: Anders Vretblad

Publisher: Springer Science & Business Media

ISBN: 0387217231

Category: Mathematics

Page: 272

View: 1226

DOWNLOAD NOW »

A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.

The Laplace Transform

Theory and Applications

Author: Joel L. Schiff

Publisher: Springer Science & Business Media

ISBN: 0387227571

Category: Mathematics

Page: 236

View: 9494

DOWNLOAD NOW »

The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + · · · + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation.

Dynamical Systems with Applications using MATLAB®

Author: Stephen Lynch

Publisher: Springer

ISBN: 3319068202

Category: Mathematics

Page: 514

View: 7211

DOWNLOAD NOW »

This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica

Advanced Mathematical Analysis

Periodic Functions and Distributions, Complex Analysis, Laplace Transform and Applications

Author: R. Beals

Publisher: Springer Science & Business Media

ISBN: 146849886X

Category: Mathematics

Page: 234

View: 7412

DOWNLOAD NOW »

Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass ing different examples.

An Introduction to Fourier Series and Integrals

Author: Robert T. Seeley

Publisher: Courier Corporation

ISBN: 0486151794

Category: Mathematics

Page: 112

View: 4157

DOWNLOAD NOW »

DIVThis compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition. /div

Introduction to the Laplace Transform

Author: Peter K.F. Kuhfittig

Publisher: Springer Science & Business Media

ISBN: 1489922016

Category: Mathematics

Page: 206

View: 2871

DOWNLOAD NOW »

The purpose of this book is to give an introduction to the Laplace transform on the undergraduate level. The material is drawn from notes for a course taught by the author at the Milwaukee School of Engineering. Based on classroom experience, an attempt has been made to (1) keep the proofs short, (2) introduce applications as soon as possible, (3) concentrate on problems that are difficult to handle by the older classical methods, and (4) emphasize periodic phenomena. To make it possible to offer the course early in the curriculum (after differential equations), no knowledge of complex variable theory is assumed. However, since a thorough study of Laplace. transforms requires at least the rudiments of this theory, Chapter 3 includes a brief sketch of complex variables, with many of the details presented in Appendix A. This plan permits an introduction of the complex inversion formula, followed by additional applications. The author has found that a course taught three hours a week for a quarter can be based on the material in Chapters 1, 2, and 5 and the first three sections of Chapter 7. If additional time is available (e.g., four quarter-hours or three semester-hours), the whole book can be covered easily. The author is indebted to the students at the Milwaukee School of Engineering for their many helpful comments and criticisms.

Fourier Analysis and Its Applications

Author: G. B. Folland

Publisher: American Mathematical Soc.

ISBN: 9780821847909

Category: Mathematics

Page: 433

View: 1980

DOWNLOAD NOW »

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.

Introductory Mathematics: Algebra and Analysis

Author: Geoffrey C. Smith

Publisher: Springer Science & Business Media

ISBN: 1447106199

Category: Mathematics

Page: 215

View: 3525

DOWNLOAD NOW »

This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.

Applied Partial Differential Equations

Author: J David Logan

Publisher: Springer

ISBN: 3319124935

Category: Mathematics

Page: 289

View: 4877

DOWNLOAD NOW »

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Schaum's Outline of Laplace Transforms

Author: Murray Spiegel

Publisher: McGraw Hill Professional

ISBN: 9780070602311

Category: Mathematics

Page: 261

View: 2928

DOWNLOAD NOW »

Confusing Textbooks? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.

Sets, Logic and Categories

Author: Peter J. Cameron

Publisher: Springer Science & Business Media

ISBN: 1447105893

Category: Mathematics

Page: 182

View: 7551

DOWNLOAD NOW »

Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.

Measure, Integral and Probability

Author: Marek Capinski,(Peter) Ekkehard Kopp

Publisher: Springer Science & Business Media

ISBN: 1447136314

Category: Mathematics

Page: 227

View: 3004

DOWNLOAD NOW »

This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.