An Introduction to Differential Manifolds

Author: Jacques Lafontaine

Publisher: Springer

ISBN: 3319207350

Category: Mathematics

Page: 395

View: 2668

DOWNLOAD NOW »

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

An Introduction to Differentiable Manifolds and Riemannian Geometry

Author: William Munger Boothby

Publisher: Gulf Professional Publishing

ISBN: 9780121160517

Category: Mathematics

Page: 419

View: 8285

DOWNLOAD NOW »

The second edition of this text has sold over 6,000 copies since publication in 1986 and this revision will make it even more useful. This is the only book available that is approachable by "beginners" in this subject. It has become an essential introduction to the subject for mathematics students, engineers, physicists, and economists who need to learn how to apply these vital methods. It is also the only book that thoroughly reviews certain areas of advanced calculus that are necessary to understand the subject. Line and surface integrals Divergence and curl of vector fields

An Introduction to Differential Manifolds

Author: Dennis Barden,Charles Benedict Thomas

Publisher: N.A

ISBN: 9781860943553

Category: Mathematics

Page: 218

View: 5266

DOWNLOAD NOW »

This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincare-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskom varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori. Readership: Upper level undergraduates, beginning graduate students, and lecturers in geometry and topology.

Introduction to Differentiable Manifolds

Author: Louis Auslander,Robert E. MacKenzie

Publisher: Courier Corporation

ISBN: 048615808X

Category: Mathematics

Page: 224

View: 8236

DOWNLOAD NOW »

This text presents basic concepts in the modern approach to differential geometry. Topics include Euclidean spaces, submanifolds, and abstract manifolds; fundamental concepts of Lie theory; fiber bundles; and multilinear algebra. 1963 edition.

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 8668

DOWNLOAD NOW »

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

An Introduction to Differential Geometry and Topology in Mathematical Physics

Author: Wang Rong,Chen Yue

Publisher: World Scientific

ISBN: 9814495808

Category: Mathematics

Page: 220

View: 8548

DOWNLOAD NOW »

This book gives an outline of the developments of differential geometry and topology in the twentieth century, especially those which will be closely related to new discoveries in theoretical physics. Contents:Differential Manifolds:Preliminary Knowledge and DefinitionsProperties and Operations of Tangent Vectors and Cotangent VectorsCurvature Tensors, Torsion Tensors, Covariant Differentials and Adjoint Exterior DifferentialsRiemannian GeometryComplex ManifoldGlobal Topological Properties:Homotopy Equivalence and Homotopy Groups of ManifoldsHomology and de Rham CohomologyFibre Bundles and Their Topological StructuresConnections and Curvatures on Fibre BundlesCharacteristic Classes of Fibre BundlesIndex Theorem and 4-Manifolds:Index Theorems for Manifolds Without BoundaryEssential Features of 4-Manifolds Readership: Mathematicians and physicists. Keywords:Homotopy Theory;Index Theorems;Riemannian Geometry;Complex Manifolds;Homology;De Rham Cohomology;Fibre Bundles;Characteristic Classes

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 9120

DOWNLOAD NOW »

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387217525

Category: Mathematics

Page: 631

View: 4299

DOWNLOAD NOW »

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Introduction to Differential Topology

Author: T. Bröcker,K. Jänich

Publisher: Cambridge University Press

ISBN: 9780521284707

Category: Mathematics

Page: 160

View: 7644

DOWNLOAD NOW »

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 6688

DOWNLOAD NOW »

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 7232

DOWNLOAD NOW »

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Introduction to Smooth Manifolds

Author: John Lee

Publisher: Springer Science & Business Media

ISBN: 1441999825

Category: Mathematics

Page: 708

View: 7521

DOWNLOAD NOW »

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

A Course in Differential Geometry

Author: Thierry Aubin

Publisher: American Mathematical Soc.

ISBN: 9780821872147

Category: Mathematics

Page: 184

View: 463

DOWNLOAD NOW »

This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

An Introduction to Dirac Operators on Manifolds

Author: Jan Cnops

Publisher: Springer Science & Business Media

ISBN: 1461200652

Category: Mathematics

Page: 211

View: 6238

DOWNLOAD NOW »

The chapters on Clifford algebra and differential geometry can be used as an introduction to the topics, and are suitable for senior undergraduates and graduates. The other chapters are also accessible at this level.; This self-contained book requires very little previous knowledge of the domains covered, although the reader will benefit from knowledge of complex analysis, which gives the basic example of a Dirac operator.; The more advanced reader will appreciate the fresh approach to the theory, as well as the new results on boundary value theory.; Concise, but self-contained text at the introductory grad level. Systematic exposition.; Clusters well with other Birkhäuser titles in mathematical physics.; Appendix. General Manifolds * List of Symbols * Bibliography * Index

Differential Geometry with Applications to Mechanics and Physics

Author: Yves Talpaert

Publisher: CRC Press

ISBN: 9780824703851

Category: Mathematics

Page: 480

View: 5774

DOWNLOAD NOW »

An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.

Fundamentals of Differential Geometry

Author: Serge Lang

Publisher: Springer Science & Business Media

ISBN: 9780387985930

Category: Mathematics

Page: 540

View: 1066

DOWNLOAD NOW »

This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 847

DOWNLOAD NOW »

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.

Riemannian Manifolds

An Introduction to Curvature

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 038798271X

Category: Mathematics

Page: 226

View: 978

DOWNLOAD NOW »

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.